dc.contributor.advisor | Gregor, Petr | |
dc.creator | Soukup, Jan | |
dc.date.accessioned | 2018-11-30T13:54:40Z | |
dc.date.available | 2018-11-30T13:54:40Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/99787 | |
dc.description.abstract | A parity path in a vertex colouring of a graph G is a path in which every colour is used even number of times. A parity vertex colouring is a vertex colouring having no parity path. Let χp(G) be the minimal number of colours in a parity vertex colouring of G. It is known that χp(Bn) ≥ √ n where Bn is the complete binary tree with n layers. We show that the sharp inequality holds. We use this result to obtain a new bound χp(T) > 3 √ log n where T is any binary tree with n vertices. We study the complexity of computing the parity chromatic number χp(G). We show that checking whether a vertex colouring is a parity vertex colouring is coNP-complete and we design an exponential algorithm to com- pute it. Then we use Courcelle's theorem to prove the existence of a FPT algorithm checking whether χp(G) ≤ k parametrized by k and the treewidth of G. Moreover, we design our own FPT algorithm solving the problem. This algorithm runs in polynomial time whenever k and the treewidth of G is bounded. Finally, we discuss the relation of this colouring to other types of colourings, specifically unique maximum, conflict free, and parity edge colourings. | en_US |
dc.description.abstract | Paritní cesta ve vrcholovém barvení grafu G je cesta ve které je každá barva použita sudě-krát. Paritní vrcholové barvení je barvení, které nemá žádnou paritní cestu. Nechť χp(G) je minimální počet barev v paritním bar- vení grafu G. Je známo, že χp(Bn) ≥ √ n, kde Bn je úplný binární strom s n vrstvami. Dokážeme, že platí ostrá nerovnost, a pomocí tohoto odhadu dokážeme nový odhad χp(T) > 3 √ log n, kde T je libovolný binární strom s n vrcholy. Dále se zabýváme časovou složitostí výpočtu paritního chromatického čísla χp(G). Dokážeme, že ověřování korektnosti paritního vrcholového bar- vení je coNP-úplné a popíšeme exponenciální algoritmus, který ho počítá. Dále pomocí Courcelleho věty dokážeme že existuje FPT algoritmus parame- trizovaný počtem barev k a stromovou šířkou grafu G ověřující že χp(G) ≤ k. Navíc popíšeme náš vlastní FPT algoritmus řešící tento problém. Tento al- goritmus běží v polynomiálním čase pro omezené k a stromovou šířku G. Na- konec zkoumáme příbuznost tohoto barvení s dalšími barveními, konkrétně s unique maximum, conflict free a parity edge barveními. | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | parity vertex colouring | en_US |
dc.subject | conflict free colouring | en_US |
dc.subject | unique maximum colouring | en_US |
dc.subject | binary tree | en_US |
dc.subject | treewidth | en_US |
dc.subject | FPT | en_US |
dc.subject | paritní vrcholové barvení | cs_CZ |
dc.subject | conflict free colouring | cs_CZ |
dc.subject | unique maximum colouring | cs_CZ |
dc.subject | binární strom | cs_CZ |
dc.subject | stromová šířka | cs_CZ |
dc.subject | FPT | cs_CZ |
dc.title | Parity vertex colorings | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2018 | |
dcterms.dateAccepted | 2018-06-22 | |
dc.description.department | Katedra teoretické informatiky a matematické logiky | cs_CZ |
dc.description.department | Department of Theoretical Computer Science and Mathematical Logic | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 198928 | |
dc.title.translated | Paritní vrcholová barvení | cs_CZ |
dc.contributor.referee | Kučera, Petr | |
dc.identifier.aleph | 002192920 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Obecná informatika | cs_CZ |
thesis.degree.discipline | General Computer Science | en_US |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logic | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná informatika | cs_CZ |
uk.degree-discipline.en | General Computer Science | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Paritní cesta ve vrcholovém barvení grafu G je cesta ve které je každá barva použita sudě-krát. Paritní vrcholové barvení je barvení, které nemá žádnou paritní cestu. Nechť χp(G) je minimální počet barev v paritním bar- vení grafu G. Je známo, že χp(Bn) ≥ √ n, kde Bn je úplný binární strom s n vrstvami. Dokážeme, že platí ostrá nerovnost, a pomocí tohoto odhadu dokážeme nový odhad χp(T) > 3 √ log n, kde T je libovolný binární strom s n vrcholy. Dále se zabýváme časovou složitostí výpočtu paritního chromatického čísla χp(G). Dokážeme, že ověřování korektnosti paritního vrcholového bar- vení je coNP-úplné a popíšeme exponenciální algoritmus, který ho počítá. Dále pomocí Courcelleho věty dokážeme že existuje FPT algoritmus parame- trizovaný počtem barev k a stromovou šířkou grafu G ověřující že χp(G) ≤ k. Navíc popíšeme náš vlastní FPT algoritmus řešící tento problém. Tento al- goritmus běží v polynomiálním čase pro omezené k a stromovou šířku G. Na- konec zkoumáme příbuznost tohoto barvení s dalšími barveními, konkrétně s unique maximum, conflict free a parity edge barveními. | cs_CZ |
uk.abstract.en | A parity path in a vertex colouring of a graph G is a path in which every colour is used even number of times. A parity vertex colouring is a vertex colouring having no parity path. Let χp(G) be the minimal number of colours in a parity vertex colouring of G. It is known that χp(Bn) ≥ √ n where Bn is the complete binary tree with n layers. We show that the sharp inequality holds. We use this result to obtain a new bound χp(T) > 3 √ log n where T is any binary tree with n vertices. We study the complexity of computing the parity chromatic number χp(G). We show that checking whether a vertex colouring is a parity vertex colouring is coNP-complete and we design an exponential algorithm to com- pute it. Then we use Courcelle's theorem to prove the existence of a FPT algorithm checking whether χp(G) ≤ k parametrized by k and the treewidth of G. Moreover, we design our own FPT algorithm solving the problem. This algorithm runs in polynomial time whenever k and the treewidth of G is bounded. Finally, we discuss the relation of this colouring to other types of colourings, specifically unique maximum, conflict free, and parity edge colourings. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logiky | cs_CZ |
thesis.grade.code | 1 | |
dc.identifier.lisID | 990021929200106986 | |