
DOCTORAL THESIS

Barbora Hudcová

Complexity and Computational Capacity of Discrete
Dynamical Systems

Department of Algebra

Supervisor of the doctoral thesis: Tomáš Mikolov, Ph.D.
Study programme: Mathematics

Study branch: Algebra, number theory, and mathematical
logic

Prague 2024

I declare that I carried out this doctoral thesis independently, and only with the cited sources,
literature and other professional sources. It has not been used to obtain another or the same
degree.

I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb.,
the Copyright Act, as amended, in particular the fact that the Charles University has the right
to conclude a license agreement on the use of this work as a school work pursuant to Section 60
subsection 1 of the Copyright Act.

In date .
Author’s signature

i

My gratitude extends to many individuals I crossed paths with during my doctoral journey. I
thank Tomáš Mikolov for suggesting this fascinating research topic to me and for mentoring me
during the whole process. My special thanks belong to Jǐŕı Tůma for his mathematical guidance
during our numerous consultations. Thank you to Lenka Zdeborová and Stefano Nichele for
welcoming me to their teams and supervising me during my internships abroad. Thank you to
David Stanovský for his useful advice and encouragement to apply for the START grant.

I am very grateful to Freya Behrens, Jakub Krásenský, and Trym Lindell. Collaboration
with them was an inspiring process that fuelled me with enthusiasm for research. Thank you to
my great colleagues Hugo Cisneros, Jelle Piepenbrock, Teven LeScao, Kateryna Zorina, David
Herel, Tom Glover, and Sidney Pontes-Filho. Last but certainly not least, my warmest thanks
go to my friends and family who have been my unwavering pillars of support and comfort.

ii

Title: Complexity and Computational Capacity of Discrete Dynamical Systems

Author: Barbora Hudcová

Department: Department of Algebra

Supervisor: Tomáš Mikolov, Ph.D., Czech Institute of Informatics, Robotics and Cybernetics,
Czech Technical University

Advisor: doc. RNDr. Jǐŕı Tůma, DrSc., Department of Algebra

Abstract: The central aim of this thesis is to study the concepts of “complexity” and “computa-
tional capacity” of discrete dynamical systems and to connect them to rigorously measurable
properties. In the first part of the thesis, we propose a formal metric of a discrete system’s
complexity based on the numerical estimates of its asymptotic convergence time. We identify a
critical region of systems corresponding to a phase transition from an ordered to a chaotic phase.
Additionally, we complement this work by studying dynamical phase transitions of discrete
systems analytically, using newly developed tools from statistical physics. Specifically, for a
fixed discrete system, we demonstrate that varying its initial configurations can result in abrupt
changes in the system’s behaviour; and we describe exact positions of such transitions. The
second part of this thesis is dedicated to analysing computational capacity of cellular automata
via the notion of their relative simulation. Informally, we say that automaton B can simulate A
if B can effectively reproduce any dynamics of A. We introduce a specific notion of automata
simulation and formalize it in algebraic language. This allowed us to answer open questions
about the computational capacity of cellular automata using well-established algebraic results.
Namely, we prove that certain classes of affine automata are very limited in terms of what
they can simulate. Further, we characterize the simulation capacities of any canonical additive
automaton with radius one.

Keywords: discrete dynamical systems cellular automata dynamical phase transitions computa-
tional capacity

iii

Contents

1 Introduction 3

Introduction 3
1.1 General Introduction . 3

1.1.1 Contribution of the Authors . 4
1.2 Elementary Definitions . 5

1.2.1 One-dimensional Cellular Automata . 6
1.2.2 Two-dimensional Cellular Automata . 7
1.2.3 Attractors and Transients . 7

1.3 Brief History of Cellular Automata . 7
1.4 Complexity Measures of Cellular Automata . 8

1.4.1 Description Length of Space-Time Diagrams 9
1.4.2 Typical Convergence Time . 10
1.4.3 Self-Organized Criticality and Avalanche Distributions 10
1.4.4 Discussing the Gaps . 11

1.5 Transient Classification . 11
1.5.1 Phase Transitions . 13

1.6 Dynamical Phase Transitions in Graph Cellular Automata 13
1.6.1 Randomized Discrete Dynamical Systems 14
1.6.2 Backtracking Dynamical Cavity Method 15
1.6.3 Dynamical Phase Transitions in an Anti-Conformist GCA 17

1.7 Cellular Automata as Models of Computation 18
1.7.1 Cellular Automata as Efficient Computers 18
1.7.2 Theory of CA Computation . 20

1.8 Simulation Limitations of Affine Cellular Automata 21
1.8.1 Defining CA Simulation . 21
1.8.2 Simulation Limitations of Affine Cellular Automata 23

1.9 Simulation Capacities of Canonical Additive Automata 24

2 Classification of Discrete Dynamical Systems Based on Transients 26
2.1 Introduction . 26
2.2 Transient Classification: A General Method . 26
2.3 Cellular Automata . 29

2.3.1 Introducing Cellular Automata . 29
2.3.2 History of CA Classifications . 30
2.3.3 Transient Classification of ECA . 32
2.3.4 Discussion . 35
2.3.5 Transient Classification of 2D CA . 36
2.3.6 Transients Classification of Other Well Known CA 38

2.4 Turing Machines . 39
2.4.1 Introducing Turing Machines . 39
2.4.2 Transient Classification of Turing Machines 40
2.4.3 Transient Classification of Universal TMs 41

2.5 Random Boolean Networks . 42
2.5.1 Introducing Random Boolean Networks 42
2.5.2 Transient Classification of RBNs . 44
2.5.3 Results . 45

2.6 Conclusion . 46

1

2.7 Future Work . 47

3 Dynamical Phase Transitions in Graph Cellular Automata 48
3.1 Introduction . 48
3.2 Terminology and Notation . 50
3.3 Conforming Non-Conformist GCAs . 52

3.3.1 Types of Dynamical Phases . 54
3.4 Dynamical Cavity Methods . 57
3.5 Dynamical Phase Transitions for Conforming Non-Conformist GCAs 60
3.6 Conclusion and Open Questions . 64
3.7 Larger degree behaviour . 67
3.8 Supporting Empirics for Phase Characterization 70
3.9 Supporting Material for Dynamical Phase Transition Predictions using the

(B)DCM and Empirical Methods . 71

4 Simulation Limitations of Affine Cellular Automata 74
4.1 Introduction . 74
4.2 Defining Simulation of Cellular Automata . 75

4.2.1 CA Canonical Relations . 76
4.2.2 Iterative Powers of CAs . 78
4.2.3 Elementary Properties of CA Simulation 80

4.3 Introducing Additive and Affine Automata . 82
4.3.1 Related Work on CA Simulation . 83

4.4 Simulation Limitations of Additive and Affine Automata 84
4.4.1 Sub-automata of affine CAs . 85
4.4.2 Sub-automata of additive CAs . 86
4.4.3 Quotient automata of affine CAs . 87
4.4.4 Main Result and Examples . 88

4.5 Concluding Remarks . 90

5 Simulation Capacity of Canonical Additive Automata 91
5.1 Results Summary . 91
5.2 Iterative Powers of Canonical Additive CAs Split into Products 92
5.3 Characterizing the Simulation Capacity of Canonical Additive CAs 93
5.4 Invariant Subspaces of Iterated Powers . 97

5.4.1 Components of CA Iterated Powers . 97
5.4.2 Analysing Invariant Subspaces of CA Iterated Powers 100

5.5 Concluding Remarks . 103

Bibliography 104

List of publications 114

2

1. Introduction
1.1 General Introduction

The field of complex systems is a fascinating area of research. Due to its broad scope and
interdisciplinary nature, describing it concisely while doing it justice poses a challenge. In
essence, a complex system consists of a large number of particles that interact locally and
undergo spontaneous self-organisation into higher-level structures that evolve and behave
qualitatively differently from their components. Remarkably, the self-organization occurs
without a centralized controller governing the behaviour of the particles [153]. Examples of
such a phenomenon are omnipresent and include the growth and organisation of cells during
an organism’s developmental phase, ant colonies, the organisation of birds who locally adapt
to their neighbours and form flocks, or the interactions of individual people and markets that
culminate in a global economy [104]. It is noteworthy that the field of complex systems is
relatively nascent, with its inception often marked by the establishment of the Santa Fe Institute
in 1984. This underscores the dynamic and evolving nature of this research area.

Abstract models exhibiting such complex behaviour include cellular automata, random
Boolean networks, neural automata, and recurrent neural networks. Despite the simplicity of
the underlying update rules of such systems, their iterative application often leads to intriguing
behaviour where structures emerge and interact with each other in ways that are hard to
predict. Consequently, there is a prevailing belief that such systems hold significant potential
as models for artificial evolution – a process where structures emerge and grow in complexity
in an open-ended manner. Moreover, there is a plethora of work exploring such systems as
alternative models of efficient computation due to their massively parallel nature. These are
just a few examples to motivate the theoretical studies of such models.

With the rising efficiency of computers, it has become popular to explore such models simply
by running their simulations and observing the visualisations of their dynamics. Based on such
observations, prominent figures in the field boldly asserted that models with “complex behaviour”
exist at a critical phase transition between ordered and chaotic systems [84] and suggested that all
sufficiently “complex systems” possess the capacity for universal computation [158]. There have
been impressive results that support such claims; as an example, by giving elaborate proofs that
certain cellular automata with intriguing visualisations can indeed simulate a computationally
universal system [18, 27]. However, it yet remains a great challenge to rigorously prove such
claims in their full generality. One of the reasons is that, due to the novelty and broad scope
of the field, there is no consensus on what should be the formal definitions of notions such
as “complexity”, “emergence” or “computational capacity” [126]. This makes it especially
challenging when proving negative results.

The central aim of this thesis is to delve into the concepts of “complexity” and “computational
capacity” of discrete dynamical systems and to connect them to rigorously measurable properties.
This overarching goal naturally divides the thesis into two distinct parts that we describe below
in more detail.

In Part I, our focus is on investigating the complexity of discrete systems through the
analysis of their dynamical properties. In Chapter 2, we propose a new measure of complexity
for discrete systems that we call the transient classification. It is based on numerical estimates of
the system’s global dynamics. The method allows us to formally assess whether a given discrete
dynamical system belongs to the “ordered”, “chaotic”, or “complex” regime. Compared to
previous approaches, the method does not depend on any arbitrary choice of parameters, which
makes the results robust and marks the method’s significance. Expanding and complementing
our initial work, we delve further into the exploration of global dynamics of discrete systems in
Chapter 3 containing the paper [16]. This paper represents a collaborative effort with Freya

3

Behrens under the guidance of Lenka Zdeborová. Here, we analytically derive new results
pertaining to the global dynamics of specific discrete systems. For that, we use sophisticated tools
from statistical physics that were recently developed by Freya Behrens and Lenka Zdeborová
exactly to enable answering such questions. Part I consists of two papers, each presented as an
individual chapter:

[67] B. Hudcová, T. Mikolov, Classification of Discrete Dynamical Systems Based on
Transients, Artificial Life, 27 (3-4), MIT Press, 220–245 (2022).

[16] F. Behrens, B. Hudcová, L. Zdeborová, Dynamical Phase Transitions in Graph
Cellular Automata, submitted (2023). Available at arXiv:2310.15894.

Part II of this thesis is dedicated to analysing computational capacity of discrete systems,
specifically focusing on cellular automata. We argue that a natural way to assess this is via
the notion of cellular automata relative simulation. Informally, we say that automaton B can
simulate A if B can effectively reproduce any dynamics of A. Measuring the computational
capacity of a given automaton then translates to assessing how many other automata can it
simulate. To address this, we introduce a specific notion of automata simulation and formalize
it in the algebraic language. This algebraic formalization is an important contribution of the
thesis, as it allows us to answer open questions about the computational capacity of cellular
automata using well-established algebraic results. To showcase this, in Chapter 4 containing
our paper [66] we prove that certain classes of affine automata are very limited in terms of
what they can simulate. This is a negative result that widely surpasses previous works in its
generality. We further expand the results about affine automata in Chapter 5. Part II consists
of two chapters, first of them contains the paper:

[66] B. Hudcová, J. Krásenský, Simulation Limitations of Affine Cellular Automata,
submitted (2023). Available at arXiv:2311.14477.

The second chapter contains an original text that is yet to be extended into a paper.
An integral contribution of this thesis lies in exploring novel relationships between complex

systems and other well-established fields. Concretely, we explore new links to particular methods
from statistical physics in Part I and to universal algebra in Part II. The thesis showcases that
both fields provide powerful tools for deriving new results about discrete dynamical systems. It
remains an exciting question how far could such results be pushed in the future.

1.1.1 Contribution of the Authors

The texts of the papers included in this thesis were left mostly unchanged from the versions
accepted (or submitted) to journals. Due to this, the notations can vary from chapter to chapter.
Moreover, each paper contains its own introduction that does not reflect the developments in
the field after the papers’ publication. Below, we describe in detail for each of the papers the
contribution of the authors.

The paper [67] was the work of Barbora Hudcová. Her supervisor Tomáš Mikolov is stated
as a co-author, as this is the standard procedure in the field of computer science. The paper
[16] is a result of a collaboration with Lenka Zdeborová’s team during the present author’s
internship at EPFL, Lausanne. Whereas the paper [15] which develops new statistical physics
tools to analyse dynamical systems was solely the work of Freya Behrens and Lenka Zdeborová
with just a minor contribution of the present author; the subsequent paper [16] included in the
thesis shares approximately equal contributions of both Freya Behrens and Barbora Hudcová.
Freya Behrens provided fundamental insight from the field of statistical physics and derived the
results of statistical physics methods. Barbora Hudcová provided the context and motivation
from the field of complex systems and obtained the numerical results. Together, they chose

4

https://arxiv.org/abs/2310.15894
https://arxiv.org/abs/2311.14477

the systems under study and identified their dynamical phases. Lastly, the paper [66] is a
result of collaboration of the present author (around two thirds) with Jakub Krásenský (one
third). Barbora Hudcová formalized the simulation notion into algebraic language, proved the
elementary properties of the simulation, and wrote the content of the paper. Together with
Jakub Krásenský they derived the results about limitations of affine automata, while Jakub
Krásenský also provided the main author with insightful feedback on the first version of the
manuscript. The last chapter with yet unpublished results is the work of Barbora Hudcová,
with minor contributions from Jakub Krásenský.

In the rest of this introduction, we present some elementary definitions regarding complex
systems and cellular automata in particular. This is followed by a brief history of the research
on cellular automata. Subsequently, we concisely summarize the results from each chapter of
the thesis while omitting most technical details. We complement each chapter’s results by first
providing a short overview of previous work to give some historical context and motivation,
as well as to demonstrate the sheer breadth of work examining cellular automata and other
dynamical systems.

1.2 Elementary Definitions

Though this thesis studies the dynamics of a variety of systems, the main focus remains on
cellular automata due to both their popularity and simplicity of architecture. Informally, a
Cellular Automaton (CA) can be perceived as a d-dimensional grid consisting of identical
finite-state automata. They are all updated synchronously in discrete time steps based on
an identical update function depending only on the states of automata in their fixed local
neighbourhood. We give the formal definitions below; we note this section is an updated version
of the original text in the present author’s diploma thesis [65]. A great introduction to cellular
automata can be found in [76].

Definition 1 (Cellular automaton). Let d ∈ N. We call Zd the d-dimensional cellular grid and
we say its elements are cells. Let S be a finite set of states. A configuration of the cellular grid
is a mapping c : Zd → S. We call SZd the configuration space.

Let k ∈ N. We define a d-dimensional neighbourhood of size k to be a sequence N =
(n1,n2, . . . ,nk) where each ni ∈ Zd. Given such N , we can compute the relative neighbourhood
of a cell z ∈ Zd as (z + n1, z + n2, . . . , z + nk).

Let f : Sk → S be a function. A d-dimensional cellular automaton operating on an infinite
grid with neighbourhood N and local rule f is a dynamical system A =

(︂
SZd

, F
)︂

where
F : SZd → SZd is defined as:

F (c) (z) = f
(︁
c(z + n1), c(z + n2), . . . , c(z + nk)

)︁
for all z ∈ Zd, c ∈ SZd

. (1.1)

We call F the global rule of A. We call the algebra A = (S, f) the local algebra of A and we note
that the local algebra, together with the dimension d and neighbourhood N , fully determines A.

Below, we introduce some more terminology regarding the dynamics of cellular automata.

Definition 2 (Dynamics of Cellular Automata). Let d, k ∈ N, S be a finite set and f : Sk → S

a function. Let A =
(︂
SZd

, F
)︂

be a d-dimensional CA operating on an infinite grid with some

neighbourhood N ⊆
(︂
Zd
)︂k

and local rule f . For c ∈ SZd and t ∈ N, we define the trajectory of
the initial configuration c as: (︂

c, F (c), F 2(c), F 3(c), . . .
)︂
.

The process of obtaining a trajectory is often called a simulation or an evolution of the CA.
Given the first t elements of a trajectory, t ∈ N, we define its space-time diagram to be a matrix

5

whose i-th (infinite) row is exactly F i(u), 0 ≤ i ≤ t, where F 0(c) = c. Studying the dynamics
of a cellular automaton simply means studying any property related to its global rule, which
is iterated on different initial configurations. We define the phase-space of A to be a directed
graph with nodes SZd and edges

{︁(︁
c, F (c)

)︁ ⃓⃓
c ∈ SZd}︁.

Typically, the most studied Cellular Automata (CAs) are in dimension 1 and 2. These
are the cases we focus on in this thesis as well and thus, in what follows, we discuss more
terminology regarding them.

1.2.1 One-dimensional Cellular Automata

In the case of 1D CAs, we will simplify the notation. Let N = (n1, . . . , nk) ⊆ Zk be a
neighbourhood of some CA. If we put r = max

{︁
|ni| | i ∈ {1, 2, . . . , k}

}︁
, we can notice that N can

be embedded into a larger symmetric neighbourhood, which is of the form (−r,−r+1, . . . , r−1, r).
In such a case, we call r the radius of the symmetric neighbourhood.

For any 1D CA with neighbourhood N = (n1, . . . , nk) and local rule f : Sk → S, we can
consider an analogous automaton with N ′ = (−r, . . . , r), r = max

{︁
|ni| | i ∈ {1, 2, . . . , k}

}︁
, and

a local function f ′ : S2r+1 → S defined as f ′ = f ◦ (πn1 , . . . , πnk
) where πi : S2r+1 → S is the

canonical projection to the i-th coordinate. Therefore, without loss of generality, we can assume
that any 1D CA has such a symmetric neighbourhood.

Let SZ be the configuration space of some 1D CA and let c ∈ SZ. We typically write ci

instead of c(i) for i ∈ Z. In such a case, (1.1) simplifies into:

F (c)i = f (ci−r, ci−r+1, . . . , ci+r−1, ci+r) for all i ∈ Z, c ∈ SZ. (1.2)

For practical purposes, when simulating a CA and depicting the space-time diagrams,
typically only “finite configurations” of the CA are considered. There are multiple ways to
reduce a CA to a finite grid, and we define one of the most classical ones below.

Definition 3 (1D CA operating on a cyclic grid). Let r, n ∈ N, S be a finite set and f : S2r+1 →
S. A 1D cellular automaton operating on a finite cyclic grid of size n with neighbourhood r
and local rule f is a dynamical system (Sn, F) where F : Sn → Sn is defined as in (1.2) but all
indices are computed modulo n.

Cellular automata naturally split into families determined by their dimensionality, neigh-
bourhood and state set. One of the smallest of such families are the Elementary Cellular
Automata (ECAs) which are 1D CAs with states 2 := {0, 1} and radius r = 1. They have
received a lot of attention in the literature because despite the simple description of their local
rules, ECAs contain automata with intriguing dynamics.

Each ECA is given by a Boolean function f : 23 → 2. Hence, there are only 256 of them.
We have a natural bijection between the set of ternary Boolean functions {f : 23 → 2} and
integers in the set {0, 1, . . . , 255} given simply by:

f ↦→ 20f(0, 0, 0) + 21f(0, 0, 1) + 22f(0, 1, 0) + . . .+ 26f(1, 1, 0) + 27f(1, 1, 1).

We call such number the Wolfram number of f , after the notation introduced by Stephen
Wolfram in [159], which is now widely used. Respecting his terminology, we will identify each
ECA with the Wolfram number of its local rule.

Example 4 (ECA 90). Let f : 23 ↦→ 2 be defined as f(x, y, z) = x+ z. This Boolean function
has Wolfram number 90. In Figure 1.1, we show the space-time diagram of ECA 90 operating
on a finite cyclic grid of size 100.

6

Figure 1.1: Space-time diagram of ECA 90 operating on a finite cyclic grid of 100. We typically
identify the state 0 with white and state 1 with black colour. Each row of the depicted diagram
corresponds with a configuration in the ECA’s trajectory; thus, time is “progressing downwards”.

1.2.2 Two-dimensional Cellular Automata

When studying 2D CAs, there are two classic examples of neighbourhoods that are considered.
The Moore neighbourhood is defined as

NMoore = ((1, 1), (1, 0), (1,−1), (0, 1), (0, 0), (0,−1), (−1, 1), (−1, 0), (−1,−1)) .

The simpler Von Neumann neighbourhood is defined as

Nvon Neumann = ((1, 0), (0, 1), (0, 0), (0,−1), (−1, 0)) .

Moore neighborhood Von Neumann neighborhood

Figure 1.2: Diagrams of two typical neighbourhoods of two-dimensional cellular automata.

Analogously to the one-dimensional case, we can define 2D CAs operating on finite grids.
In this case, the finite grid is parametrized by a tuple (n,m) ⊆ N2. In such a case, in (1.1) the
first coordinates of the indices are computed modulo n and the second coordinates modulo m.
We say that grid is of size nm. Loosely speaking, the topology of the two-dimensional finite
grid is that of a torus. In the case of 2D CAs, their space-time diagrams are usually presented
as animations, where the frames represent consecutive configurations.

1.2.3 Attractors and Transients

Let A be a CA operating on a finite grid of size n ∈ N with a global rule F and state set
S. Since S is finite, the configuration space Sn is as well and therefore, every trajectory(︁
c, F (c), F 2(c), F 3(c), . . .

)︁
, c ∈ Sn becomes eventually periodic. I.e., there exist i, j ∈ N,

i < j, such that F i(c) = F j(c). Let i ∈ N be the smallest such that there exist j ∈ N,
i < j, such that F i(c) = F j(c). We call the sequence

(︁
F 0(c) = c, F (c), F 2(c), . . . , F i(c)

)︁
the transient of c. Let j ∈ N be smallest such that F i(c) = F j(c). We call the sequence(︁
F i(c), F i+1(c), F i+2(c), . . . , F j−1(c)

)︁
the attractor of c.

1.3 Brief History of Cellular Automata

While the exploration of cellular automata and related discrete dynamical systems within the
context of complexity sciences is relatively recent, the body of work is extensive and characterized

7

by its interdisciplinary nature. In this section, we provide a succinct overview of key results
pertinent to this thesis.

The popularity of cellular automata owes much to the groundbreaking work of John von
Neumann who was fascinated with designing a non-trivial, self-replicating machine. Inspired
by Stanislaw Ulam’s suggestion to explore cellular automaton environments, von Neumann
successfully realized this vision, introducing what he termed the universal constructor. The
universal constructor comprised a potentially infinite tape and an ensemble of cells representing
the “processor”. Its functionality involved interpreting the information on the tape as a blueprint
for a new machine, constructing it, and finally, duplicating the information onto the tape of the
newly created machine. Its non-triviality was undoubtable, as the processor implemented a
universal Turing machine. Once such a constructor received its own description on the tape, it
would reproduce itself. Von Neumann’s visionary insight to employ the tape information twice
— first for interpretation and then for duplication — preceded the discovery of DNA’s structure
[20].

Arthur Burks later published von Neumann’s completed work [112], sparking numerous
variations in the design of self-replicating structures. This influential work played a pivotal role
in the exploration of artificial life and self-replication. Despite these advancements, scientists
debated the existence of a significant gap between “trivial” and “computationally universal”
structures. Some argued that natural organisms might not necessarily be Turing complete.
Therefore, many other much simpler structures were designed, a great overview was written by
Reggia et al. [129], a famous example being the loops designed by Christopher Langton [82].

The popularity of cellular automata was solidified with John Conway’s invention of Game
of Life [46] – a 2D CA with a very simple update rule that showcases fascinating behaviour.
When simulated from various initial configurations, one can observe the emergence of various
intricate patterns. The dynamics of Game of Life sustains an enduring allure for researchers
and enthusiasts alike.

Since the seminal works of von Neumann and Conway, cellular automata have been ex-
tensively explored across diverse research domains such as evolutionary algorithms [105, 120],
parallel computation [10], cryptography [53, 75], topological and symbolic dynamics [81, 132],
ergodic theory [58, 156], and computational mechanics [60, 136]. In the next section, we discuss
in more detail the work on classifying CA dynamics and measuring their complexity, as that is
particularly relevant for Part I of this thesis.

1.4 Complexity Measures of Cellular Automata

One of the most widely referred measures of complexity is due to Wolfram who in [158] proposed
four “universality classes” of CA dynamical behaviour and claimed that each CA belongs to
one such class; we cite them from [158] below:

1) Evolution leads to a homogeneous state.

2) Evolution leads to a set of separated simple stable or periodic structures.

3) Evolution leads to a chaotic pattern.

4) Evolution leads to complex localized structures, sometimes long-lived.

Figure 1.3 illustrates the four classes of CA dynamics.
Wolfram claims that Class 4 is of particular interest as it encompasses all automata with

complex behaviour, and further speculates that all such systems are “capable of universal
computation”. Clearly, the classification is heuristic which makes it challenging to convincingly
show that a particular CA belongs to a certain class, especially when it comes to Class 4. This
has been addressed in [29] where Culik and Yu suggest formal definitions roughly corresponding

8

0 10 20 30 40
0

5

10

15

20

25

30

35

40

0 10 20 30 40
0

5

10

15

20

25

30

35

40

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200

Figure 1.3: Space-time diagrams of CAs from each Wolfram’s class. (Top left) Class 1 ECA 32.
(Top right) Class 2 ECA 108. (Bottom left) Class 3 ECA 30. (Bottom right) Class 4 ECA 110.

to Wolfram’s. Before we describe them, we introduce some terminology. In what follows, we
will focus solely on one-dimensional automata.

Let A =
(︂
SZ, F

)︂
be a 1D CA with local rule f : Sk → S for some k ∈ N. We say that a

state q ∈ S is stable if f(q, q, . . . , q) = q. Let s ∈ S. A configuration with all but finitely many
cells in the state s is called an s-finite configuration. A configuration with all its cells in the
state s is called a homogeneous configuration of s. Culik and Yu propose the following hierarchy:
A belongs to Class One if there exists a stable state s ∈ S such that all the CA’s s-finite
configurations evolve into the homogeneous configuration of s. It belongs to Class Two if there
exists a stable state s ∈ S such that each trajectory starting from an s-finite configurations
becomes eventually periodic. It belongs to Class Three if there exists a stable state s ∈ S
such that for any pair of s-finite configurations c1, c2 it is decidable whether c2 belongs to the
trajectory of c1. Lastly, Class Four consists of all one-dimensional automata. The authors
claim that their Class k corresponds to the union of Wolfram’s classes up to class k for each
k ∈ {1, 2, 3, 4}. Among other fundamental results, the authors prove that it is undecidable
whether a given CA belongs to Class One, Two or Three.

Despite the fundamental undecidability result, it is a meaningful pursuit to design formal
metrics of CA complexity that would be applicable in practice and that would approximate the
four classes well enough. Such metrics would allow us to automatically search for automata
with complex behaviour in vast CA spaces as well as to elucidate the characteristic properties
of Wolfram’s “mysterious class 4”. Below, we briefly summarize some of the most classical
approaches to designing such a metric.

1.4.1 Description Length of Space-Time Diagrams

Intuitively, complex cellular automata are the ones that produce intriguing patterns in their
space-time diagrams. Thus, a natural approach to measuring their complexity is to analyse
the “description length” of their space-time diagrams. Once suitable means of “describing” the

9

diagrams are fixed, it is to be expected that the description length should be the largest for
chaotic systems that produce space-time diagrams with no apparent patterns, the smallest for
ordered systems that quickly converge to short attractors, whereas complex automata should
have intermediate values. Such a method using a compression algorithm from Mathematica
has been explored in [165] by Zenil. He assesses the compression size of each ECA’s space-time
diagrams (considering a finite cyclic grid) and further applies a clustering algorithm on the
results, obtaining CA classes roughly corresponding to Wolfram’s classification.

The description length of the space-time diagrams has also been measured by information-
theoretic means. In the simplest case, given a trajectory

(︁
c, F (c), . . . , F t(c)

)︁
for some configura-

tion c and 1D CA global rule F operating on a finite cyclic grid of a fixed size n, each of the grid
cells i ∈ Zn can be identified with a random variable Xi whose outcomes comprise the sequence
ci, F (c)i, . . . , F

t(c)i. Then, one can measure the average Shannon entropy H [137] over all the
random variables [126]. Again, intuitively, this value should be maximal for chaotic space-time
diagrams with no obvious patterns and it should be minimal for ordered systems, while complex
system should have intermediate values. Some works use the transformation H(1 −H) arguing
that in this fashion, the obtained value is maximal for complex systems [89, 133].

1.4.2 Typical Convergence Time

In his seminal work [153] Langton explores the complexity of CAs through the convergence time
to their typical behaviour. He considers CAs with states {0, 1} operating on a finite cyclic grid
of a fixed size. His definition of “typical behaviour” encompasses two cases:

1. The system’s actual attractor is reached.

2. The system follows a trajectory for a prolonged time (e.g., 100 time-steps) where each
configuration has “similar properties” to the rest. Namely, Langton computes the density
of each configuration in the trajectory (i.e. its average number of 1s). If it holds that each
configuration’s density does not differ from the trajectory’s average by more than 1 %, he
assesses the system has reached its typical behaviour.

Langton initializes the configurations uniformly randomly and computes the average time
until the system’s “typical behaviour” is reached, whichever of the two cases occurs first. He
argues that ordered systems converge quickly to their attractors and chaotic systems have short
transients to their typical behaviour as well. The complex phase can be identified with an
explosion of the transient length.

1.4.3 Self-Organized Criticality and Avalanche Distributions

Another popular measure of CA complexity is based on the famous yet controversial concept of
self-organized criticality introduced by Bak et al. in 1980s [9, 155]. The core of this concept is
the claim that many systems in nature “self-organize towards a critical state” which has spurred
active debate in various fields ranging from statistical mechanics to neuroscience [13, 94]. We
illustrate this on a simple example of a sandpile model used in the seminal paper [9]. Consider
a 2D CA A defined on a finite cyclic grid with the von Neumann neighbourhood. A cell’s state
can be any natural number representing the number of sand grains on that specific location.
The update function is parametrized by a threshold K ∈ N: if a cell’s number of grains exceeds
K, the cell state is decreased by four, and all its neighbouring cell states are increased by 1;
otherwise the cell’s state is preserved. The automaton is initialized randomly and simulated
until an attractor is reached. The authors then perturb the attractor by randomly choosing a
cell and changing its state. This then causes an avalanche; i.e., a process until a new attractor
is reached. The authors measure the “avalanche size”, i.e., the number of cells that change their
state during the avalanche. By repeating this process, they obtain a probability distribution

10

D(s) that an avalanche of size s occurs. They argue that D(s) ∼ s−τ for some τ ∈ R+; i.e., the
distribution obeys a power law where an arbitrarily large avalanche is essentially possible – such
a property is considered typical for a system at a critical point. Similar phenomena have been
observed in well-known complex CAs such as Game of Life [8]. The method has since been used
to automatically search for CAs with power-law distributions of their avalanches as a means to
automatically generate systems with complex behaviour [125].

1.4.4 Discussing the Gaps

All such metrics approximate a property that is in its full generality undecidable, therefore,
each of them naturally comes with its own set of shortcomings. One of the most prominent
ones is that all methods described above depend on the size of cyclic grid chosen for the
experiment. Some of the methods further rely on other parameters such as the length of the
trajectories generated for analysing the description length of CA space-time diagrams or a
time frame to asses that a system has reached its typical behaviour in Langton’s method. In
general, dependence of the results on the specific parameter values is rather underexplored in the
literature. As an example, in [67] included in Chapter 2 we study in detail Zenil’s classification
and show that the different parameter values do change the resulting CA clusters qualitatively.

Furthermore, most of the methods assign a specific real-numbered value to each automaton,
representing aspects such as its space-time description length, average entropy of cell values or
typical convergence time. However, interpreting this value in isolation for a single automaton
can be challenging. The value only becomes meaningful when compared to the values of other
automata within a given family. By comparing results and forming clusters, these values can
be interpreted as indicative of certain CA classes. Consequently, analysing a single automaton
from an extensive CA family not yet explored in the literature presents a challenge.

In the following sections, we outline the transient classification we propose, aiming to address
both of the aforementioned issues.

1.5 Transient Classification

In this section, we briefly summarize our work from Chapter 2.
The transient classification is a method which aims to formally assess whether a given

discrete dynamical system belongs to the “ordered” (Wolfram’s classes 1 and 2), “chaotic” (class
3) or “complex” (class 4) regime. The main significance of the method is that it does not depend
upon an arbitrary choice of any parameters which makes the results robust. We briefly explain
the process below; more details can be found in Chapter 2.

Let us consider a sequence of automata all in a fixed dimension d ∈ N given by a fixed
neighbourhood and local rule, operating on finite cyclic grids of growing sizes n1 < n2 < . . .:

A1 = (Sn1 , F1),A2 = (Sn2 , F2),A3 = (Sn3 , F3),A4 = (Sn4 , F4),

Let us fix i ∈ N. Clearly, Fi : Sni → Sni is a deterministic function operating on a
finite set and thus, each of the trajectories c, Fi(c), F 2

i (c), . . ., c ∈ Sni becomes eventually
periodic. Hence, its transient length t(c) can be simply measured by running a program
that computes the trajectory. Thus, we can compute the average transient length of Ai as:
T (Ai) := 1

|S|ni

∑︁
c∈Sni t(c). For ni large, going through all the initial configurations is not

feasible, so we simply estimate the value T (Ai) using the Monte Carlo sampling method. The
aim of the transient classification is to compute the average transient lengths T (A1), T (A2), . . .
for a CA operating on finite cyclic grids of growing size in order to estimate its asymptotic
growth; this is illustrated in 1.4.

In practice, we generate a finite part of the sequence T (A1), T (A2), . . . , T (AB) where B is
an upper bound imposed by our computational limitations, and examine different regression

11

Discrete system Average transient
length

A1 = (Sn1 , F1) T (A1)
A2 = (Sn2 , F2) T (A2)
A3 = (Sn3 , F3) T (A3)
A4 = (Sn4 , F4) T (A4)

...
...

asym
ptotic

grow
th

Figure 1.4: Diagram depicting the asymptotic growth of average transient lengths of a sequence
of cellular automata operating on finite grids of growing size.

fits of the data. Specifically, we evaluate the fit to constant, logarithmic, linear, polynomial,
and exponential functions. We pick the best fit with respect to the R2 score and obtain the
classes: Bounded, Log, Lin, Poly, and Exp. If the score of the fit to all such functions is low
(i.e., R2 < 85%), we say the system is Unclassified. Surprisingly, we found a very good fit to
one of the classes with R2 > 90% for most systems we examined.

There seems to be good correspondence between the union of the classes Bounded and Log
and the union of Wolfram’s Classes 1 and 2; we mark the set of such systems as the ordered
phase. Furthermore, the Exp class seems to correspond well with Wolfram’s Class 3; marking
a chaotic phase. Between the two phases we observe systems whose transients seem to grow
linearly or polynomially with the grid size. Such systems form a region that can be interpreted
as a “phase transition region” between the ordered and chaotic phase. We measured multiple
CAs generally considered as complex, such as Game of Life, and the results suggest that such
systems belong to this region. This supports our hypothesis that the Lin and Poly Classes
roughly correspond to Wolfram’s Class 4. The trend we have observed, which seems to hold
across various families of discrete dynamical systems, is shown in Figure 1.5.

Figure 1.5: General trend of the transient classification results.

Thus, the method allows us to classify the dynamics of a single automaton without relying
on a choice of any arbitrary parameters and yields a good approximation to Wolfram’s classes.
Whereas the transient classification seems to be a good tool for approximating the complexity
in discrete systems, we also discuss some of its drawbacks below.

Computationally Demanding Nature of the Classification The most obvious one is
that the method merely approximates the asymptotic behaviour of a system from finitely many
data points and does not guarantee us the true asymptotic transient growth. For some systems,
the transient growth might correspond to more complicated functions but we have deliberately
chosen the classes Bounded, Log, Lin, Poly, and Exp to be quite robust and coarse to have
clearer boundaries between them. The uncertainty of the true asymptotic growth is especially
relevant for the Lin and Poly Classes which identify the critical phase transition region. Such

12

systems might turn out to be logarithmic or exponential, and it might merely be the case that
we have not detected this due to our limited data. However, in such a case, such systems would
exhibit significantly slower convergence to their asymptotic behaviour than systems in other
classes which is a typical property of a system at a phase transition. In addition, from our
experiments, it appears that the distribution of transient lengths for such systems tends to have
a long tail, thus it is hard to estimate the true average well which adds to the computational
intensity of the classification method.

Coarse Sampling of Initial Configurations We now describe a more nuanced issue
which is nevertheless very important to mention. Given a dynamical system and its size
n ∈ N, the Monte Carlo Method for estimating its average transient relies on sampling the
initial configurations uniformly randomly. For a system with binary states where the initial
configurations belong to {0, 1}n, this leads to a certain bias: most configurations sampled
by such means are “balanced”, i.e., they contain the same number of 0s and 1s. Thus, the
classification gives us information about the dynamics of the system which is always initiated
from a special region of its initial configurations. Obviously, if the system is initiated differently,
its dynamics can differ fundamentally and such variance is not grasped by the classification.
However, in order to gain intuitive insight into a system’s dynamics, the most classical method
used in literature is to randomly sample an initial configuration of a CA and observe the
space-time diagram generated from such a configuration. Thus, the classification simply mimics
this procedure. If it is required to study the dynamics of a system initialized from a different
region, one can simply sample the initial configurations uniformly from that specific region to
obtain the results about the system’s transients in the chosen regime.

1.5.1 Phase Transitions

Chapter 3 of the thesis can be seen as a natural continuation of the work on transient classification,
which in particular addresses the shortcomings described above. Before we summarize the
results of Chapter 3 in the next section, we highlight an important difference between the
approaches in Chapters 2 and 3.

In the transient classification, we fix a specific region of initial configurations and proceed
by studying the behaviour of various discrete dynamical systems. We group together systems
with qualitatively similar behaviour and identify a phase transition region in the space of the
discrete dynamical systems.

In contrast, in Chapter 3, we fix a specific discrete dynamical system: as an example, this
could be an anti-conformist GCA that we introduce in Chapter 3. For such a system, we study
its behaviour while varying the system’s initial configurations. A suitable parameter of the
configuration space {0, 1}n is the configuration density; i.e., its average number of 1s. Using
methods from statistical physics, we show there can be abrupt changes in the system’s behaviour
as we increase the configuration density. Thus, in Chapter 3 we identify phase transitions in
the space of the initial configurations. The difference of the context in which we use the notion
“phase transition” between Chapters 2 and 3 is illustrated in Figure 1.6.

1.6 Dynamical Phase Transitions in Graph Cellular Automata

The contribution of Chapter 3 is two-fold:

• We showcase sophisticated, newly developed tools from statistical physics and demonstrate
they yield new analytical results about dynamics of discrete dynamical systems. Specifically,
we use them to analyse systems very close in architecture to cellular automata that we
call Graph Cellular Automata (GCAs).

13

Figure 1.6: We can view each system to be given by its update rule (x-axis) together with a
specific region of initial configurations (y-axis); yielding essentially a 2-dimensional space. (Left)
In the transient classification, for a fixed y value, we traverse the x-axis. (Right) In contrast, in
Chapter 3, for a fixed x value, we traverse the y axis.

• We study a specific family of GCAs for which we reinforce the well-known fact: the
initialisation of a system matters. Concretely, we identify qualitatively different dynamical
behaviours of a given GCA that we call dynamical phases. Further, we demonstrate the
GCA’s phase can abruptly change as we increase the initial configuration density. The
tools we use allow us to precisely describe the value at which such a dynamical phase
transition occurs in the limit when the GCA’s size grows to infinity.

We describe the two points in more detail below.

1.6.1 Randomized Discrete Dynamical Systems

As previously discussed, obtaining analytically exact general results regarding the dynamics of
cellular automata poses a great challenge, given that various properties of CA dynamics have
been proven to be undecidable [29, 74, 77]. However, one can study discrete dynamical systems
related to cellular automata that have a more “randomized architecture”. Then, it becomes
possible again to derive analytically correct results about the typical dynamics of the system in
the limit when its size goes to infinity, using tools from statistical physics. Below, we describe a
simple example of such a result, preceded by an introduction to relevant terminology.

Graph Terminology By a directed graph of size n ∈ N we understand the tuple G = (V,E)
where V = {1, . . . , n} is the set of nodes and E = {(i, j) | i, j ∈ V } is the set of edges. For each
node i, we define its neighbourhood to be the set ∂i = {j | (j, i) ∈ E} ⊆ V ; and we define the
indegree of i as d(i) = |∂i|.

By an undirected graph of size n we understand the tuple G = (V,E) where V = {1, . . . , n}
is the set of nodes and E = {{i, j} | i, j ∈ V } is the set of edges. For each node i ∈ V we define
the neighbourhood of i to be the set ∂i = {j | {i, j} ∈ E} ⊆ V ; and we define the degree of i as
d(i) = |∂i|. We say an undirected graph is d-regular if each node has degree d.

Let G be a (either directed or undirected) graph with n nodes and let S be a finite set of
states. Each node i can be assigned a state xi ∈ S; we represent such an assignment by the
sequence x = x1 . . . xn ∈ Sn and call it an S-configuration or just a configuration.

14

Random Boolean Networks Let G = (V,E) be a directed graph with n ∈ N nodes and let
f1, . . . , fn be a sequence of Boolean functions such that fi : {0, 1}d(i) → {0, 1} for each i ∈ V .
For each node i ∈ V we fix a particular ordering of the nodes in its neighbourhood: (i1, . . . , id(i)).
A Boolean network B of size n given by G, f1, . . . , fn, and the orderings of the neighbourhoods
is a discrete dynamical system ({0, 1}n, F) where F : {0, 1}n → {0, 1}n is defined as follows for
each configuration x ∈ {0, 1}n and each i ∈ V :

F (x)i = fi(xi1 , . . . ,xid(i)).

The average connectivity of B is defined as
∑︁n

i=1 d(i)
n . Given N ∈ N and K ∈ R+ we say

that B is an N-K Random Boolean Network (RBN) if it is a Boolean network that has been
uniformly randomly sampled from all the Boolean networks of size N with average connectivity
K.

It has been shown that given a fixed K one can analyse the dynamics of a typical N -K
random Boolean network with N ↦→ ∞. Specifically, using simple approaches from statistical
physics (in this case, the mean field calculations and annealed approximations) one can study
how does the Hamming distance between two randomly chosen initial configurations evolve over
time. It has been shown in [38, 91] that for N ↦→ ∞ if K < 2 the distance of the configurations
converges to 0 marking an “ordered phase”, whereas for K > 2 the configurations diverge
marking a “chaotic phase” with the precise value K = 2 identifying a “critical regime”. Great
overviews of the abundant results regarding random Boolean networks are for example [47, 71].

Informally speaking, the annealed approximations for RBNs give good results precisely
because their architecture is “very random”. Once studying discrete systems with less randomized
architectures, the application of more sophisticated tools are necessary. This is exactly the case
for graph CAs that we study in Chapter 3: the only difference between CAs and GCAs is that
whereas the connectivity topology of the former is given by a regular grid, for the latter this is
given by a random regular graph.

Graph Cellular Automata. Let S be a finite set of states. A Graph Cellular Automaton
(GCA) is a discrete dynamical system that operates on configurations of some d-regular graph
with n nodes. In this work, we only consider the case when the graph is sampled uniformly
randomly from the set of all d-regular graphs. The state of each node gets updated synchronously,
depending on its own state and the state of its neighbours; each node i ∈ V uses an identical
local update rule f : S × Sd ↦→ S and has a fixed ordering of its neighbours: (i1, . . . , id). This
gives rise to a global mapping F : Sn → Sn governing the dynamics of the system. For a
configuration x ∈ Sn, the i-th node gets updated according to:

F (x)i = f(xi;xi1 , . . . , xid
).

We write a semicolon to highlight that the first entry of f is always the state of the node being
updated.

Fig 1.7 illustrates the difference between the architectures of cellular automata, graph
cellular automata, and random Boolean networks.

Below, we give a very brief overview of the method we use in Chapter 3 to analyse the
dynamical phase transitions of certain graph cellular automata.

1.6.2 Backtracking Dynamical Cavity Method

The Backtracking Dynamical Cavity Method (BDCM) was introduced only very recently by
Freya Behrens and Lenka Zdeborová in [15]. It is a versatile approach based on the cavity
method from statistical physics [100, 101] that allows us to analyse the dynamics of complex
systems out of equilibrium. It can be seen as an extension of a previously introduced Dynamical

15

Figure 1.7: Figure illustrates architectures of three discrete dynamical systems. (Left) Cellular
automata. (Middle) Graph cellular automata. (Right) Random Boolean networks.

Cavity Method (DCM) [62, 73, 88]. Given a dynamical system suitable for the application of
BDCM (more details on this can be found in Chapter 3), the method allows us to answer
questions such as:

• How many attractors of size 1 does the system have?

• Given initial configurations with a fixed density ρinit, how many of them converge to
attractors of size 1 in a fixed number of time-steps?

We illustrate the core idea of the method very coarsely on one of the simplest examples:
determining the number of size 1 attractors of a particular GCA.

Let us consider a GCA of size n on a random d-regular graph of size n ∈ N with states
S = {0, 1} and a local update rule f : {0, 1} × {0, 1}d → {0, 1}. We denote the ordered
neighbourhood of node i ∈ N as ∂i = (i1, . . . , id). We introduce a probability distribution
over all configurations such that all size 1 attractors have equal probability, and any other
configuration has probability zero; for x ∈ {0, 1}n we define:

P (x) = 1
Z

n∏︂
i=1
1 [f(xi,xi1 , . . . ,xid

) = xi] where

Z =
∑︂

x∈{0,1}n

n∏︂
i=1
1 [f(xi,xi1 , . . . ,xid

) = xi] .

Here, 1(·) is the indicator function yielding a 1 on a true Boolean statement and 0 otherwise.
If we had access to the value Z, we would immediately know the number of size 1 attractors

of the system. However, computing it exactly is intractable for large n since the sum goes over
exponentially many summands. We typically assume that with n ↦→ ∞, Z grows approximately
as esn for some s ∈ R+. In this case, we call s the entropy of the size 1 attractors. In this
scenario, the BDCM employs the belief propagation algorithm that, under certain assumptions,
efficiently recovers the value of s that is asymptotically exact in the limit when n ↦→ ∞.

Explaining the belief propagation formally is out of the scope of this introduction; its detailed
description can be found in the textbook [99]. Informally speaking, the belief propagation
algorithm works as follows: each node in the graph gets assigned certain “messages” that
represent partial information about s. Such messages are passed between neighbouring nodes
iteratively: each node assembles the messages from its neighbours to update its own message
values. The message updates can be done efficiently only under the assumption that the
messages travelling to the node are uncorrelated – that they come from branches that do
not interact, in other words that the graph is a tree. Once the algorithm converges and the
messages do not change their values after an update, the value of s can be reconstructed from
the messages. When the underlying graph contains loops, the same algorithm can be used
heuristically; however, there is no guarantee in general that the retrieved solution is correct.

16

For a random d-regular graph, it is a famous fact that as the size of the graph grows to
infinity, the graph looks locally tree like: specifically, for a random d-regular graph of size n,
the length of the shortest loop going through a typical node grows approximately as log(n).
Nevertheless, in order to have a guarantee that the belief propagation recovers an asymptotically
exact solution, further assumptions (called the replica symmetry [99]) need to be checked.

In Chapter 3, we use this method to answer more sophisticated questions about graph CAs.
Specifically, we identify certain dynamical phases of a GCA that depend on:

• Type of the system’s attractor. E.g.: Is it a size 1 attractor? If yes, does it consist of a
homogeneous configuration or not?

• Speed of convergence to the attractor. E.g.: Does the system of size n reach the attractor
within log(n) steps? Or does it converge in more than exp(n) steps?

Subsequently, for a particular ρinit ∈ [0, 1], we measure the entropy of each dynamical phase the
system exhibits when initiated with configurations with the given ρinit. This allows us to assess
for each ρinit ∈ [0, 1] what is the most typical phase of the system. We systematically do this
for increasing values of ρinit and this allows us to spot abrupt changes in the type of typical
dynamical phase the system exhibits: we call this the dynamical phase transition. The DCM
and BDCM allow us to identify exact values of ρinit where such phase transitions occur. We
give an example of one of our results from Chapter 3 below.

1.6.3 Dynamical Phase Transitions in an Anti-Conformist GCA

Specifically, in Chapter 3, we analyse a family of GCAs called conforming non-conformist GCAs.
We now showcase the results on one particular example.

We fix a degree d = 5. The anti-conformist GCA given by a random 5-regular graph of size
n with states {0, 1} updates each node i ∈ {1, 2, . . . , n} in the following way:

• Majority of bits in the neighbourhood of i is computed.

• If at least four neighbours are in the majority state, node i is assigned the majority state.

• Otherwise, if only three neighbours are in the majority state, node i is assigned the
minority state.

After a careful numerical analysis of the anti-conformist GCA’s behaviour, we identified two
dynamical phases of the system.

• In the rapid phase the system converges fast (approximately within log(n) steps) to
attractors of size 1 or 2.

• In the chaotic phase the system converges slowly (approximately in exp(n) steps) to
attractors of size 1 or 2.

For the anti-conformist GCA described above, we used DCM to identify a precise value of
ρinit when the system abruptly changes its typical dynamical phase from rapid to chaotic. The
results showing such a dynamical phase transition are described in detail in Figure 1.8. Therein,
we also demonstrate that the analytical result matches well with the results of our numerical
experiments.

This concludes the introduction to Part I of this thesis. Below, we proceed with the
introduction to Part II.

17

rapid phase

n = 75

ti
m

e
=

10
0

density = 0.2

n = 75

density = 0.3

0.3 0.7

d
en

si
ty

ev
ol

u
ti

on

tim
e

space

ρinit = 0.2

0.200 0.210 0.220 0.230

density ρinit

0.0

0.2

0.4

0.6

0.8

1.0

P
[c

h
ao

ti
c

p
h

as
e]

103

104

105

106

n

dynamical phase transition

ρinit ∼ 0.217

theoretical extrapolation empirical estimate

chaotic phase

n = 75

ti
m

e
=

10
0

density = 0.2

n = 75

density = 0.3

0.3 0.7

d
en

si
ty

ev
ol

u
ti

on

ρinit = 0.3

Figure 1.8: A phase transition diagram for a particular instance of a 5-regular GCA
with a an anti-conformist rule. An illustration of the system’s two phases that depend on
the density (i.e., the average number of black-coloured nodes) in the initial configuration. The
phases are illustrated by space-time diagrams for a system of size n = 1000 nodes, though only
a window of 75 nodes is shown. (Left) Rapid phase: Fast convergence to the all-0 attractor.
(Right) Chaotic Phase: Apparent randomness in the node’s state, convergence takes longer.
(Middle) In the large system limit, when n → ∞, there is a dynamical phase transition. At a
particular initial density value ρinit, the typical behaviour of the system abruptly switches from
the rapid to the chaotic phase. For each ρinit and each system size n we sampled 1024 initial
configurations with the given ρinit and computed how often the system enters a chaotic phase.
For practical purposes, we conclude the system is in a chaotic phase if it does not converge within
100 ∗ log2(n) time-steps. The resulting frequency exhibits a sharp phase transition between
0.217 and 0.218, where the solid red line is our prediction from the DCM and the shaded red
area comes from an empirical approximation. This transition separates the behaviour on the
left and the right.

1.7 Cellular Automata as Models of Computation

Ever since the initial seminal papers on cellular automata [84, 112, 158] there has been a lot
of interest in the connection between a system’s dynamics and its ability to compute. As an
example, we remind the bold assertion by Wolfram that all class 4 automata are capable of
universal computation [158]. Showing that a given CA can solve a challenging computational
task is indeed a convincing way to demonstrate that the system is complex. Part 2 of this thesis
thus explores the complexity of cellular automata from the perspective of their computational
capacity. We first give a brief overview on the literature studying cellular automata as models
of computation. Subsequently, we summarize the results in Chapters 4 and 5 of the thesis.

The lines of work on CA computation naturally split into two branches: a practical one
exploring how to automatically find automata that can solve tasks efficiently and a theoretical
one formally studying computational capacity of CAs as well as their limitations.

1.7.1 Cellular Automata as Efficient Computers

When studying cellular automata as practical, fast models of parallel computation, it typically
entails tackling the following questions:

1. What is a good set of challenging computational tasks that are suitable for the parallel
nature of cellular automata?

2. Given such a task, what is a suitable way to encode the input into the CA’s configurations?
How to define the CA’s halting state? And how to decode the CA’s output?

18

3. Given a task and an “encoding and decoding scheme”, what is a good optimization method
that would automatically search for automata capable of solving the task efficiently?

Such questions have been extensively explored and we give a brief overview of some of the
works below.

Tasks for Cellular Automata

One classical line of work explores the ability of CA to self-organize. This includes tasks such as
the famous “firing squad synchronization problem”. In this scenario, the objective is to design a
CA with the following property: given an initial configuration on an arbitrary finite grid where
all cells are in a stable state except for a single cell representing the “command to fire”, the CA
should evolve in such a way that all cells eventually synchronize into a uniform “firing signal”
state. Importantly, this synchronization should emerge without any prior occurrence of the
“firing signal” state in the CA’s trajectory [152]. The original motivation behind this problem
stems from the challenge of simultaneously activating all cells comprising a self-replicating CA
structure, such as the one designed by von Neumann, when only local interactions are possible.

Subsequently, there have been multiple works exploring CAs as models of morphology. They
typically aim to find (mostly 2D) CAs that can self-organize into various patterns from a given
initial configuration: such as countries’ flags [113] or emojis resilient to perturbation [107].
Another simple, yet well-known task of CA synchronization is the majority task [22, 32]. Here,
the goal is to design a CA that converges to a homogeneous configuration comprising the state
that occurred most frequently in the initial configuration.

Other lines of work explore the capability of CAs to solve classical benchmark tasks from
the machine learning field. This includes simple tasks such as memorizing 5 bits of information
across prolonged time while the system is perturbed [163], balancing a cart-pole [149], or
classifying MNIST digits [127]. Furthermore, other works explore the potential of CAs as
language models [25]. A great overview of computation in CAs was written by Mitchell in [103].

Encoding and Decoding Information

The major challenge lies in understanding how a given CA processes information and in choosing
suitable methods of encoding the input into the CA’s configurations as well as decoding the
CA’s output. In practical scenarios, these choices can be made arbitrarily, or the encoding
and decoding mappings can be optimized through some training process. A popular scheme
employing such optimal searches is called reservoir computing [90, 163]. In this approach, the
encoding is chosen randomly, and the decoding mapping is represented by a simple neural
network layer trained to maximize the CA’s performance on a specific task. Notably, the CA
reservoir approach stands out for its significantly greater energy efficiency when compared to
the conventional training methods used for neural networks.

Evolving Cellular Automata

As opposed to carefully hand-designing automata capable of computing a given task, many
works explore optimization methods for their automated discovery. One classical approach
employs genetic algorithms, drawing inspiration from biological evolution [105, 120].

Assume a fixed way to evaluate CAs’ performance on a given computational task. In a
typical setting, each CA is encoded as a bit string. Initially, the algorithm chooses a population
of such strings at random. At each iteration, the population evolves by undergoing “mutations”
– the strings are randomly perturbed – and “crossover” – the strings are combined to form
new ones. Once a new population is obtained, it is subject to “selection” – the performance
of each CA is evaluated on the given task and the “fittest candidates” are chosen for the next
iteration. As the process is iterated, the fitness of the population should increase, with the hope

19

of eventually containing well-performing candidates. This method has been used, e.g., to find
CAs solving the majority task [106].

Despite the abundant work on exploring CAs as practical, fast computers, it still remains
a great challenge to make their efficiency comparable to other state of the art models of
computation. Furthermore, there is a considerable gap in our understanding of which automata
are most suitable for efficient computing. This motivates the theoretical research on CA
computation that we discuss below.

1.7.2 Theory of CA Computation

The body of work described above aims to showcase that cellular automata are fast, parallel
computers. In contrast, the theoretical line of work focuses on answering questions such as:

• Given a particular class of CAs, does it contain one capable of universal computation?

• Given a particular CA, is it computationally universal?

• What CA classes are limited in terms of what they can compute?

Universal Computation in Cellular Automata The classical way to formally demonstrate
a CA’s complexity is to prove its Turing completeness. This is typically done by considering a
suitable computationally universal system (a universal Turing machine, universal tag system,
etc.) and embedding its computations into a CA’s space-time diagrams. In this way, there have
been constructed universal cellular automata with various properties; such as a 1D CA with
a totalistic local rule (i.e., the local rule does not depend on the order of the cells in the CA
neighbourhood) [1], a reversible CA (i.e., a CA whose global rule is an injective mapping) [146]
or a 1D number conserving CA (a CA whose states form a subset of the integers that satisfies
the following property: given an arbitrary finite cyclic grid, the CA global rule operating on it
preserves the sum of states in each configuration) [108].

Another impressive line of work studies the universality of a particular given CA. It has
been of great interest whether complex CAs with fascinating visualisations of their dynamics
are Turing complete. This has indeed been proven e.g., for Game of Life or ECA 110 [18, 27].
Such proofs are typically very elaborate and require identifying various local structures that
propagate through space in the CA’s space-time diagrams (such as a glider in Game of Life).
Subsequently, the interactions of such structures are shown to encode “basic logic gates” of the
universal system being embedded into the CA’s dynamics.

Intuitively, the mapping that embeds the universal system’s computations into the CA’s space-
time diagrams should be “simple enough” to ensure that it is not performing the computation
instead of the automaton at hand. However, there is no consensus on the precise definition of
such embeddings, which makes it extremely hard to prove convincing negative results about
the computational capacity of a CA. A great overview on universality in cellular automata was
written by Ollinger in [118].

Cellular Automata Relative Simulation A different approach to formally assessing a CA’s
computational capacity is through the notion of CA relative simulation. Informally, we say that
CA A is simulated by B if each space-time diagram of A can be, after suitable transformations,
reproduced by B. We argue that comparing two cellular automata is much more natural than
comparing a CA with a Turing machine, since in the latter case, the architectures of the systems
differ substantially. Past works have explored various notions of CA simulations, typically
focusing on positive results: for a fixed family of CAs and a fixed CA simulation definition,
authors construct intrinsically universal CAs; i.e., cellular automata that are able to simulate
any other CA within the fixed family [1, 39, 40, 41, 49, 116, 117].

20

In contrast, the complementary work focuses on the negative results. For various notions
of CA simulations, the goal is to show that particular types of automata are limited in terms
of what they can simulate. Such results are scarce, yet they bring a valuable insight into the
structure of the CA space imposed by the simulation relation. For certain CA simulation
definitions, negative results have been shown about various classes of CAs such as nilpotent
CAs or particular additive automata [35, 97, 98].

Generally, each CA relative simulation definition considers a certain class of CA transforma-
tions T that map each automaton B into a class of related automata T(B). Then, we say that
A can be simulated by B if A ∈ T(B). We propose an informal classification of the previously
studied transformations into:

• algebraic: transformations of the CA’s local rule; e.g.: products, sub-automata, quotients,
iterations

• geometric: transformations of the CA’s grid structure; e.g.: tiling of the grid space and
grouping of multiple cells, shifts, reflections

In Chapter 4 of this thesis, we propose a definition of CA simulation that is, to the best
of our knowledge, the most general algebraic one so far. We briefly summarize the results of
Chapter 4 below.

1.8 Simulation Limitations of Affine Cellular Automata

In this section, we focus solely on one-dimensional cellular automata to simplify the notation.
Each 1D CA A = (SZ, F) with radius r is fully determined by its local algebra A = (S, f),
f : S2r+1 → S. We sometimes write A = (S, f)r to highlight the CA’s radius. We first concisely
introduce the definition of CA simulation.

1.8.1 Defining CA Simulation

The CA simulation we introduce is based on combining four notions: sub-automata, quotient
automata, CA products, and CA iterative powers. We briefly explain them below.

Let φ : S → T be a mapping between finite sets. We define its canonical extension
φ : SZ → TZ simply as φ(c)i = φ(ci) for each c ∈ SZ and each i ∈ Z.

Definition 5. Let A = (SZ, F) and B = (TZ, G) be CAs with local algebras A = (S, f)r and
B = (T, g)r respectively. We say that:

1. A is a sub-automaton of B (up to isomorphism) if there exists an injective mapping
ι : S → T such that ι ◦ F = G ◦ ι. This is illustrated in Figure 1.9.

B A
· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

ι

ι

ι

G

G

F

F

Figure 1.9: Diagram depicts A a sub-automaton of B.

2. A a quotient automaton of B (up to isomorphism) if there exists a surjective mapping
π : T → S such that F ◦ π = π ◦G. This is illustrated in Figure 1.10.

3. Let k ∈ N and let B1 = (T1, g1)r, . . . ,Bk = (Tk, gk)r be local algebras of some automata
B1, . . .Bk with radius r. We say that A is a product of B1, . . . ,Bk if A = B1 × · · · × Bk.

21

B A
· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

π

π

π

G

G

F

F

Figure 1.10: Diagram depicts A a quotient automaton of B.

The mappings ι, and π provide means of “translating” between the space-time diagrams of
A and B. Specifically, they witness that whenever A is a sub-automaton or quotient automaton
of B, each space-time diagram of A can be reconstructed from a suitable space-time diagram
of B. This is illustrated in Example 6 for the case of a quotient automaton. Similarly, given
automata B1, . . . ,Bk with the same radius such that A equals to their product, it is clear that
together, the CAs B1, . . . ,Bk can reconstruct any space-time diagram of A. It is crucial that the
mappings ι, and π can be efficiently implemented by a computer program as they are extensions
of mappings on finite sets. Moreover, the simplicity of the mappings guarantees that they do
not process the information contained in the space-time diagrams in any non-trivial way. This
is particularly important since, e.g., whenever A is a sub-automaton of B, we would like to
conclude that B is computationally stronger or equal to A.

We now state an important observation while omitting the technical details: When assessing
whether a given automaton is a sub-automaton or a quotient automaton of some CA, it suffices
to study their local algebras. This is a crucial observation as it roots the theory of CA simulation
into algebraic language.
Example 6. Let B = (TZ, G) be the CA with local algebra B = ({0, 1, 2, 3}, g)1 defined as
g(x, y, z) = (x+ z) mod 4. Let A = (SZ, F) be the CA with local algebra A = ({0, 1}, f)1 where
f(x, y, z) = (x+ z) mod 2 (A is the ECA 90). We define the mapping:

π : B −→ A
0, 2 ↦−→ 0
1, 3 ↦−→ 1

Then, one can easily check that the canonical extension of π satisfies F ◦ π = π ◦G. Figure
1.11 illustrates how any space-time diagram of A can be obtained from a suitable space-time
diagram of B using π as the “translation mapping”.

B = (TZ, G) with local algebra B = (Z4, g)1
g(x, y, z) = (x+ z) mod 4

A = (SZ, F) with local algebra A = (Z2, f)1
f(x, y, z) = (x+ z) mod 2

π :

0

1

0
1
2
3

π
G F

Figure 1.11: Illustration of Example 6. The figure shows the canonical extension π which
effectively “translates” space-time diagrams of B to any given diagram of A.

The notions of sub-automata, quotient automata and CA products do not take into account
the most important aspect of cellular automata: the iterative application of their local rules.
Thus, we describe below the established notion of CA iterative powers.

22

Let B = (TZ, F) be a CA with local algebra B = (T, g)r and let n ∈ N. It is natural to
iterate the global map and obtain a new discrete system (TZ, Fn). The aim is to construct a
local algebra that would correspond to the CA (TZ, Fn) while preserving the CA’s radius; this
is important as the sub-automata, quotients, and products only allow us to compare CAs with
the same radius.

Without going into too many technical detials, the “trick” when constructing the local algebra
corresponding to (TZ, Fn) while preserving the CA’s radius is to group together sequences of n
consecutive cells – this is illustrated in Figure 1.12.

g[4]

g

g

g

g

Figure 1.12: Illustration of g[4] for a ternary function g.

Definition 7. Let B = (TZ, F) be a CA with local algebra B = (T, g)r. We define its n-th
iterative power to be the CA with local algebra B[n] = (Tn, g[n])r.

Thus each CA with local algebra B = (T, g)r gives rise to a whole series of CAs with local
algebras:

B = (T, g)r, B[2] = (T 2, g[2])r, B[3] = (T 3, g[3])r, . . .

that have identical radius but operate on “larger scales” in both state space and time.

Definition 8 (CA simulation). Let A = (SZ, F) and B = (TZ, G) be CAs with local algebras
A = (S, f)r and B = (T, g)r respectively. We say that B can directly simulate A if (at least)
one of the following cases holds:

1. A is a sub-automaton of B (up to isomorphism)

2. A is a quotient automaton of B (up to isomorphism)

3. A is a product of some iterated powers of B (up to isomorphism).

We define the simulation relation A ⪯ B (we also write A ⪯ B) to be the transitive closure of
the direct simulation. If A ⪯ B we say that B can simulate A.

In the following subsection, we briefly summarize the main result of Chapter 4. Therein, we
show that certain classes of affine CAs are limited in terms of what they can simulate.

1.8.2 Simulation Limitations of Affine Cellular Automata

Additive automata are a much-studied class of CAs – in fact, they form one of the few classes of
cellular automata that are amenable to algebraic analysis which yields rigorous results about
their global dynamics [3, 54, 70, 96, 145]. Studying the sub-automata of additive CAs naturally
leads to a broader class of affine automata, which we now introduce.

Definition 9 (affine CA, additive CA). Let F be a finite field, V a finite-dimensional vector
space over F, and let A = (V Z, F) be a CA with local algebra (V, f)r. We say that A (or A) is
affine over F if f : V 2r+1 → V is an affine mapping between vector spaces over F. In such a
case, we can write f in the following form:

f(x−r, . . . ,xr) = f−r(x−r) + · · · + fr(xr) + c, (1.3)

23

where fi : V → V is a linear mapping for each −r ≤ i ≤ r and c ∈ V is a constant vector. The
mapping fi is called the i-th component of f . The class of all local algebras isomorphic to some
affine local algebra over F with radius r is denoted as AFFF

r .
In the special case when f : V 2r+1 → V is a linear mapping between vector spaces over F,

we say that A (or A) is additive over F. In such a case, we can write f as in (1.3) with c = 0.
We denote the class of all local algebras isomorphic to some local algebra additive over F with
radius r as ADDF

r .

Example 10. Let (FZ
2 , F) be the elementary CA 150 with local algebra A = (F2, f)1 where

f : F3
2 → F2 is defined as f(x, y, z) = x+ y + z. Then, A is a CA additive over F2.

The results presented in Chapter 4 hold for affine CAs whose “outer” components are
bijections – this is defined below.

Definition 11. Let A = (V, f)r be an affine local algebra of a CA with radius r whose local
rule f has components f−r, . . . , fr. We say that A is left-permutive, witnessed by i, if there
exists −r ≤ i ≤ r such that fi is a bijection and fk is the constant 0 mapping for all k < i.
Similarly, A is right-permutive, witnessed by j, if there exists −r ≤ j ≤ r such that fj is a
bijection and fk is the constant 0 mapping for all k > j.

We write that A ∈ AFFF
r;i,j if A ∈ AFFF

r and at the same time A is left-permutive witnessed
by i and right-permutive witnessed by j, i < j.

Now we can state the main result of Chapter 4:

Theorem 12. Let p be a prime, r ∈ N, and −r ≤ i < j ≤ r. Let A, B be local algebras of
cellular automata with radius r such that B ∈ AFFFp

r;i,j. If A ⪯ B, then A ∈ AFFFp

r;i,j.

This is a negative result that in its generality widely surpasses previous works [34, 35, 97]
that studied simulation capacities of a highly specific class of additive CAs.

An important contribution of Chapter 4 is that therein, we propose a definition of CA
simulation that is, to the best of our knowledge, the most general algebraic one so far. Moreover,
we formalize all the notions regarding CA simulation in abstract algebraic language. This
allowed us to see new connections to well-established algebraic fields that can provide powerful
tools for analysing the CA simulation capacities. Whereas the proofs provided in this chapter
do not rely on any sophisticated algebraic concepts, we remark that, as an example, Lemma 48
and Corollary 49 are a direct consequence of a deeper theorem by Smith [138] and Gumm [55]
about Abelian algebras with a Maltsev term.

In what follows, we summarize the results of the last chapter of this thesis.

1.9 Simulation Capacities of Canonical Additive Automata

In Chapter 4, we have studied the simulation limitations of general classes of affine automata.
As a consequence, automata with “bijective outer components” that are affine over different
prime fields Fp are incomparable with respect to the simulation relation ⪯. However, this gives
us no information about the relation of two particular CAs within the same class AFFFp

r;i,j .
In Chapter 5, we complement the previous results by analysing the simulation capacity of
individual additive automata. More precisely, given an additive CA (Fp, f)r, p prime, that
satisfies certain conditions, we give an explicit characterization of all the automata it can
simulate. As a special case, we describe the simulation capacities of any additive CA with
radius r = 1 and local algebra of the form (Fp, f)1 (over an arbitrary field Fp).

Rather than describing the result in its full generality here, we state a corollary where most
technical details can be omitted.

24

Corollary 13. Let p be a prime and consider the class CAp of all CAs with p states and radius
r = 1. Let B = (Fp, f)1 be the local algebra of an additive CA; f(x, y, z) = a−1x+ a0y + a1z
with at least two of the coefficients a−1, a0, a1 ∈ Fp non-zero. Then, one of the following cases
holds:

(1) a0 ̸= 0. Then within the class CAp, B can only simulate itself (up to isomorphism).

(2) a0 = 0. Then, within the class CAp, B can simulate (up to isomorphism) exactly itself and
the automaton with local algebra B′ = (Fp, f

′)1 where f ′(x, y, z) = a2
−1x+ 2a−1a1y + a2

1z.
Note that B ∼= B′ if and only if p = 2.

The corollary implies new results about simulation limitations even for the very well-studied
case of elementary CAs. We describe one such result in the following example.

Example 14. We consider elementary CA 90 that is defined as ECA90 = (F2, f)1 where
f(x, y, z) = x + z and ECA 165 defined as ECA165 = (F2, g)1 where g(x, y, z) = x + z + 1.
Clearly, ECA90 ∼= ECA165 via the mapping that exchanges 0 and 1. Then, Corollary 13 implies
that within the class of elementary CAs, ECA 90 can only simulate itself and ECA 165.

Proof. Clearly, ECA 90 satisfies the assumptions of Corollary 13 (2). In the case of a CA
additive over F2, the local algebras B and B′ coincide (using the notation in the corollary).
Thus, the corollary yields that ECA 90 can only simulate elementary CAs whose local algebras
are isomorphic to ECA90. In this case, we have only one bijection on F2 that is not identity,
and this yields the ECA 165.

This concludes the introduction to the thesis where we gave an outline of the thesis and
briefly explained the results of each chapter while also providing a concise overview of previous
work to motivate our results. In what follows, we present the four chapters.

25

2. Classification of Discrete
Dynamical Systems Based on
Transients
2.1 Introduction

There are many approaches to searching for systems capable of open-ended evolution. One
option is to carefully design a model and observe its dynamics. Iconic examples include
[24, 115, 128, 141]. However, as we lack any universally accepted formal definition of open-
endedness or complexity, there is no formal method of proving the system is indeed “interesting”.
Conversely, lacking definitions of such key terms, it seems extremely difficult to design such
models systematically.

Approaching the problem of searching for open-endedness bottom up, we can define a
suitable classification of dynamical systems that would help us identify a region of complexity.
An ideal classification would be based on a formally defined property, be effectively computable,
and help us automatically search for complex systems possibly capable of modeling artificial
evolution.

Over the years, many different metrics have been introduced to study systems’ dynamics. As
an example, cellular automata were studied in terms of their space-time dynamics observations
[158], their space-time compression sizes [165], via their actions on probability measures [56],
the Z-parameter [162], or the lambda parameter [83]. Most of such approaches show that the
complex region of systems lies somewhere “in between” the ordered and chaotic phase.

In this paper, we introduce a novel method of classifying complex systems based on estimating
their asymptotic average computation time with increasing space size. The key result is that the
classification identifies a region of systems that seem to be at a phase transition between ordered
and chaotic behavior. Across various classes of discrete systems, we demonstrate that complex
systems such as cellular automata computing nontrivial tasks, universal Turing machines, or
random Boolean networks at a critical phase belong to this region. Even though we are far from
characterizing complexity, we hope this method helps us understand which formally defined
properties correlate with it.

2.2 Transient Classification: A General Method

We first introduce the basic principle of the classification based on transients, which can be
applied to any deterministic discrete space and time dynamical system (DDDS). In subsequent
sections, we describe the results of the classification applied to cellular automata, Turing
machines, and random Boolean networks to demonstrate its use across different classes of
discrete dynamical systems.

Basic Notions

Let us consider a generic deterministic discrete system D operating on finite space, characterized
by a tuple D = (S, F) where S is a finite set of configurations and F : S → S is a global transition
function governing the dynamics of the system. We define the trajectory of a configuration
u ∈ S as the sequence

(u, F (u), F 2(u), . . .).

As S is finite, every trajectory eventually becomes periodic. We call the preperiod of this
sequence the transient of initial configuration u and denote its length by tu. More formally,

26

we define tu to be the smallest positive integer i, for which there exist j ∈ N, j > i, such that
F i(u) = F j(u). The periodic part of the sequence is called an attractor. The phase-space of
D = (S, F) is an oriented graph with vertices V = S and edges E = {(u, F (u)), u ∈ S}. Such a
graph is composed of components, each containing one attractor and multiple transient paths
leading to the attractor. The phase-space completely characterizes the dynamics of the system.
However, it is infeasible to describe when the configuration space S is large. Given a DDDS D,
we will focus on studying its average transient length

T (D) = 1
|S|

∑︂
u∈S

tu.

We describe the method of estimating a system’s average transient length together with the
error analysis in section Average Transients: Error Estimate.

The Main Principle

Suppose we have a sequence of DDDSs

D1 = (S1, F1), D2 = (S2, F2), D3 = (S3, F3), . . .

operating on configuration spaces of growing size. That is, Fi : Si → Si and |Si| < |Si+1| for
each i. For instance, the sequence can be given by a cellular automaton with a fixed local rule,
operating on a finite cyclic grid of growing size.

Our goal is to estimate the asymptotic growth of the systems’ average transient lengths, as
shown in Figure 2.1.

Discrete system Average transient
length

D1 = (S1, F1) T (D1)
D2 = (S2, F2) T (D2)
D3 = (S3, F3) T (D3)
D4 = (S4, F4) T (D4)

...
...

asym
ptotic

grow
th

Figure 2.1: Diagram depicting the asymptotic growth of average transient lengths of a sequence
of discrete systems.

In practice, we generate a finite part of the sequence
(︁
|Si|, T (Di)

)︁B
i=1 where B is an upper

bound imposed by our computational limitations and examine different regression fits of the data.
Specifically, we evaluate the fit to constant, logarithmic, linear, polynomial, and exponential
functions. We pick the best fit with respect to the R2 score and obtain the classes: Bounded,
Log, Lin, Poly, and Exp. If the score of the fit to all such functions is low (i.e., R2 < 85%), we
say the system is Unclassified. Surprisingly, we found a very good fit to one of the classes with
R2 > 90% for most DDDSs we examined. The trend we have observed, which seems to hold
across various families of DDDSs, is shown in Figure 2.2. We describe it in more detail for each
family in the subsequent sections.

We do not claim our method determines the true asymptotic behavior of a system; it is
merely a possible interpretation of the method. For some systems, the transient growth might
correspond to more complicated functions but we have deliberately chosen the classes to be
quite robust and coarse to have clearer boundaries between them. The uncertainty of the true
asymptotic growth is especially relevant for the Lin and Poly Classes which identify the critical

27

Figure 2.2: General trend of the transient classification results.

phase transition region. Such systems might turn out to be logarithmic or exponential, and it
might be the case that we have not detected this due to our limited data. However, in such a
case, such systems would exhibit significantly slower convergence to their asymptotic behavior
than systems in other classes which is a typical property of a system at a phase transition.

Computational Interpretation

In non-classical models of computation [142], the process of traversing a discrete system’s
transients can be perceived as the process of self-organization, in which information can be
aggregated in an irreversible manner. The attractors are then viewed as memory storage
units, from which the information about the output can be extracted. For cellular automata
(CAs), this is explored in [72]. The average transient growth then corresponds to the average
computation time of the system1. Therefore, we can interpret our goal as trying to estimate
systems’ asymptotic average computation time. DDDSs with bounded transient lengths
can only perform trivial computation. On the other hand, DDDSs with exponential transient
growth can be interpreted as inefficient computation models.

In the context of artificial evolution, we can view the global transition rule of a DDDS as
the physical rule of the system, whereas the initial configuration as the particular “setting of
the universe”, which is then subject to evolution. If we are interested in finding DDDSs capable
of complex behavior automatically, it would be beneficial for us if such behavior occurred on
average, rather than having to select the initial configurations carefully from some narrow
region. The probability of finding such special initial configurations would be extremely low
as the configuration space tends to be very large. This motivates our study of the growth of
average transient lengths rather than the maximum ones.

Average Transients: Error Estimate

Let us fix a DDDS D = (S, F) operating on a large configuration space, e.g., |S| ≫ 2100. In
such case, computing the average transient length µ is infeasible. Thus, we uniformly randomly
sample initial configurations u1, u2, . . . , um and estimate µ by 1

m

∑︁m
i=1 tui . It remains to estimate

the number of samples m so that the error | 1
m

∑︁m
i=1 tui − µ| is reasonably small.

More formally, for D = (S, F), let (S, P) be a discrete probability space where S is the set
of all configurations and P is a uniform distribution. Let X : S → N be a random variable,
which sends each u to its transient length tu. This gives rise to a probability distribution of
transient lengths on N with mean E(X) and variance var(X). It can be easily shown that
E(X) = µ. Our goal is to obtain a good estimate of E(X) by the Monte Carlo method ([119]).

Let (X1, X2, . . . , Xm) be a random sample of iid random variables, Xi
d=X for all i. Let

µ(m) = 1
m

∑︁m
i=1Xi be the sample mean and σ(m) =

√︂
1

m−1
∑︁m

i=1(Xi − µ(m))2 the sample

1Here, the computation time is understood in the abstract sense; as the number of iterations of the transition
function.

28

standard deviation. As X is a mapping from a finite set, var(X) < ∞, and thus we have by
the Central limit theorem the convergence to a normal distribution. The interval

(︂
µ(m) − u1− α

2

σ(m)
√
m
,µ(m) + u1− α

2

σ(m)
√
m

)︂
where uβ is the β quantile of the normalized normal distribution, covers µ for m large with
probability approximately 1 − α. We will take α = 0.05. Hence, with probability approximately
95%

|µ− µ(m)| < u0.975
σ(m)
√
m
.

From the nature of our data, both the values E(X) = µ and var(X) tend to grow with
increasing size of the configuration space. Therefore, to employ a general method of estimating
the number of samples, we normalize the error by the sample mean and consider |µ−µ(m)|

µ(m) .
Therefore for m sufficiently large such that

u0.975
σ(m)

√
mµ(m) < ϵ (2.1)

we have that µ(m) differs from µ by at most ϵ · 100% with probability approximately 95%.
In practice, we put ϵ = 0.1 and produce the observations in batches of size 20 until condition

(2.1) is met (for most elementary CA this was satisfied typically after 400 data points were
sampled). We approximate the uniform random sampling of initial configurations using Python’s
numpy.random library.

2.3 Cellular Automata

2.3.1 Introducing Cellular Automata

Informally, a cellular automaton (CA) can be perceived as a k-dimensional grid consisting of
identical finite state automata. They are all updated synchronously in discrete time steps based
on an identical local update function depending only on the states of automata in their local
neighborhood. A formal definition can be found in [76].

CA were first studied as models of self-replicating structures [82, 112, 129]. Subsequently,
they were examined as dynamical systems [58, 63, 150], or as models of computation [103, 146].
Being so simple to simulate, yet capable of complex behavior and emergent phenomena [28, 59],
CA provide a convenient tool to examine the key, yet undefined notions of complexity and
emergence.

Basic Notions

We study the simple class of elementary cellular automata (ECAs), which are one-dimensional
CAs with two states {0, 1} and neighborhood of size 3. Each ECA is given by a local transition
function f : {0, 1}3 → {0, 1}. Hence, there are only 256 of them. The size of this CA class is the
reason to make it our first case of study. One can simply explore it by studying the dynamics
of every single ECA.

We identify each local rule f determining an ECA with the Wolfram number of the ECA
defined as:

20f(0, 0, 0) + 21f(0, 0, 1) + 22f(0, 1, 0) + . . .+ 27f(1, 1, 1).

We will refer to each ECA as a “rule k” where k is the corresponding Wolfram number of its
underlying local rule.

29

We will consider the CA to operate on finite grids with periodic boundary conditions. Hence,
given a local rule f and a grid size n, we obtain a configuration space {0, 1}n and a global
update function F : {0, 1}n → {0, 1}n.

Let ({0, 1}n, F) be an ECA operating on a grid of size n and (u, F (u), F 2(u), . . .) a trajectory
of a configuration u ∈ {0, 1}n. The space-time diagram of such a simulation is obtained by
plotting the configurations as horizontal rows of black and white squares (corresponding to
states 1 and 0) with a vertical axis determining the time, which is progressing downwards.

We note that properties of CA phase-spaces were examined among others by Wuensche in
[162]. Precisely for this purpose, a software was designed by Wuensche in [161].

2.3.2 History of CA Classifications

An ideal classification would be based on a rigorously defined and efficiently measurable property,
identifying a region of systems with interesting behavior. In this section, we describe three
qualitatively different classifications of ECAs, and subsequently, we will compare our results to
them.

Wolfram’s Classification

The most intuitive and simple approach to examining the dynamics of CAs is to observe their
space-time diagrams. This method was particularly proclaimed by Wolfram, e.g., in [158].
Therein, he established an informal classification of CA dynamics based on such diagrams. He
distinguishes the following classes, which are shown in Figure 2.3.

Class 1 . . . quickly resolves to a homogenous state
Class 2 . . . exhibits simple periodic behavior
Class 3 . . . exhibits chaotic or random behavior
Class 4 . . . produces localized structures that

interact with each other in complicated ways

The main issue is that we have no formal method of classifying CAs in this way. In fact, this
problem is in general undecidable [29]. Moreover, the behavior of some CAs can vary with
different initial configurations. An example being rule 126 which oscillates between Class 2 and
Class 3 behavior, as shown in Figure 2.4. The transient classification we present in this paper
deals with both these issues.

Zenil’s Classification

In the first part of his paper [165], Zenil studied the compression size of the space-time diagrams
of each ECA simulated for a fixed amount of steps. For the classification, he examines the
simulations from a particular initial configuration (a single one surrounded by zeros). Using a
clustering technique, he obtained two classes distinguishing between Wolfram’s simple classes 1
and 2 and complex classes 3 and 4. We show our reproduction of Zenil’s results in Figure 2.5.

His method nicely formalizes Wolfram’s observations of the space-time diagrams. However,
the results depend on the choice of initial conditions as well as the grid size, data representation,
and the compression algorithm. We conducted multiple experiments presented in Figure 2.6,
which suggest that Zenil’s results might be sensitive to the choice of such parameters. We note
that he addresses the sensitivity to the choice of the initial configurations in the second part of
his paper [165].

In vast CA spaces where it is not feasible to examine every CA and mark it into one of
Wolfram’s classes by hand, it would not be clear how the parameter values should be chosen.
Moreover, the data representation causes the extension of this method to more general dynamical

30

0 10 20 30 40
0

5

10

15

20

25

30

35

40

0 10 20 30 40
0

5

10

15

20

25

30

35

40

0 50 100 150 200
0

50

100

150

200

0 50 100 150 200
0

50

100

150

200

Figure 2.3: Space-time diagrams of rules from each Wolfram’s class. Class 1 rule 32 is on top
left, Class 2 rule 108 on top right, Class 4 rule 110 on the bottom left, and Class 3 rule 30 on
the bottom right.

0 20 40 60 80
0

10

20

30

40

50

60

70

80

0 20 40 60 80
0

10

20

30

40

50

60

70

80

Figure 2.4: On the left, rule 126 is simulated with an initial condition consisting of a single 1 bit
padded with 0’s. On the right, the same rule is simulated with a random initial configuration.

0 50 100 150 200 250
ECA Rules

0

2000

4000

6000

8000

10000

Co
m

pr
es

se
d

siz
e

in
 b

yt
es

Figure 2.5: Reproduction of Zenil’s results in [165]. The purple cluster corresponds to the
interesting Class 3 and 4 rules, the yellow cluster to the rest.

systems to be problematic; for example, using gzip to compress space-time diagrams of a 2D
cellular automaton is suboptimal.

31

0 50 100 150 200 250
ECA Rules

0

2500

5000

7500

10000

12500

15000

Co
m

pr
es

se
d

siz
e

in
 b

yt
es

0 50 100 150 200 250
ECA Rules

0
2500
5000
7500

10000
12500
15000
17500

Co
m

pr
es

se
d

siz
e

in
 b

yt
es

Figure 2.6: Graphs representing the results of Zenil’s method when different parameter values
were used. They demonstrate the possible sensitivity of the results are. On the left, the ECAs
were simulated for longer time, which caused complex rules 110, 124, 137, and 193 to no longer
belong to the “interesting” purple cluster. On the right, the ECAs were simulated from a fixed,
randomly chosen initial condition. In such case, we obtain entirely different clusters.

Wuensche’s Z-parameter

In [162], Wuensche chose an interesting approach by studying the ECA’s behavior when
reversing the simulations and computing the preimages of each configuration. He introduces the
Z-parameter, representing the probability that a partial preimage can be uniquely prolonged
by one symbol, and suggests that Class 4 CAs typically occurs at Z ≈ 0.75. However, no clear
classification is formed. The crucial advantage is that the Z-parameter depends only on the
CA’s local rule and can be computed effectively. It is, however, questionable whether studying
only the local rule could describe the overall dynamics of a system sufficiently well.

We note that transients of CAs have been examined, as in [162] or [57]. However, we are
not aware of an attempt to compare the asymptotic growth of transients for different ECA.

2.3.3 Transient Classification of ECA

For each ECA given by a local rule f , we consider the sequence of systems

D3 = ({0, 1}3, F3), D4 = ({0, 1}4, F4), . . .

which represent the ECAs operating on grids of growing size. We can apply the transient
classification to this sequence, as described in Section Transient Classification: A General
Method to estimate the asymptotic growth of the average transient lengths for each ECA.

We consider all 256 ECAs up to equivalence classes obtained by changing the role of “left”
and “right” neighbor, the role of 0 and 1 state, or both. It can be easily shown that automata in
the same equivalence class have isomorphic phase spaces for any grid size. Thus, they perform
the same computation. This yields 88 effectively different ECAs, each being a representative
with the minimum Wolfram number from its corresponding equivalence class. In this section,
we present the classification of the 88 unique ECAs based on their asymptotic transient growth.

Results

We obtained a surprisingly clear classification of all the 88 unique ECAs with four major classes
corresponding to the bounded, logarithmic, linear, and exponential growth of average transients.
Below, we give a more detailed description of each class.

Bounded Class: 27/88 rules (30.68%). The average transient lengths were bounded by a
constant independent of the grid size. This suggests that the long term dynamics of such
automata can be predicted efficiently. See Figure 2.7.

32

0 5 10 15 20 25
0

5

10

15

20

25

30
50 100 150 200

grid size

1.75

1.80

1.85

1.90

1.95

2.00

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

Rule 36

Figure 2.7: Bounded Class rule 36. The average transient plot is on the left, the space-time
diagram on the right.

Log Class: 39/88 rules (44.32%). The largest ECA class exhibits logarithmic average transient
growth. The event of two cells at a large distance “communicating” is improbable for this class.
See Figure 2.8.

0 5 10 15 20 25
0

5

10

15

20

25

30
50 100 150 200

grid size

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

Rule 28

Figure 2.8: Log Class rule 28. The average transient plot is on the left, the space-time diagram
on the right.

Lin Class: 8/88 rules (9.09%). On average, information can be aggregated from cells at an
arbitrary distance. This class contains automata whose space-time diagrams resemble some
sort of computation. This is supported by the fact that this class contains two rules known to
have a nontrivial computational capacity: rule 184, which computes the majority of black and
white cells, and rule 110, which is the only ECA so far proven to be Turing complete ([27]).

We note that rules in this class are not necessarily complex as the interesting behavior seems
to correlate with the slope of the linear growth. Most of the Class Lin rules had only a very
gradual incline. In fact, the only two rules with such slope greater than 1, rules 110 and 62,
seem to be the ones with the most interesting space-time diagrams. See Figure 2.9.

We are aware that average transients of rules in Lin Class might turn out to grow logarith-
mically or exponentially given enough data samples. In such a case, the rules in Lin Class show
a significantly slower convergence to their asymptotic behavior, which supports the hypothesis
that they belong to a phase transition region.

Exp Class: 6/88 rules (6.82%). This class has a striking correspondence to automata with
chaotic behavior. Visually, there seem to be no persistent patterns in the configurations. Not
only the transients but also the attractor lengths are significantly larger than for other rules.

33

0 20 40 60 80
0

20

40

60

80

100
50 100 150 200

grid size

50

100

150

200

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

Rule 62

Figure 2.9: Lin Class rule 62. The average transient plot is on the left, the space-time diagram
on the right.

The rules with the fastest growing transients are 45, 30 and 106. See Figure 2.10.

0 20 40 60 80
0

20

40

60

80

100
5 10 15 20 25 30

grid size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

1e6 Rule 45

Figure 2.10: Exp Class rule 45. The average transient plot is on the left, the space-time diagram
on the right.

Affine Class: 4/88 rules (4.55%). This class contains rules 60, 90, 105, and 150 whose local
rules are affine Boolean functions. Such automata can be studied algebraically and predicted
efficiently. It was shown in [96] that the transient lengths of rule 90 depend on the largest power
of 2, which divides the grid size. Therefore, the measured data did not fit any of the functions
above but formed a rather specific pattern. See Figure 2.11.

0 20 40 60 80
0

20

40

60

80

100
20 25 30 35 40 45

grid size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

Rule 90

Figure 2.11: Affine Class rule 90. The average transient plot is on the left, the space-time
diagram on the right.

34

Fractal Class: 4/88 rules (4.55%). This class contains rules 18, 122, 126, and 146 which are
sensitive to initial conditions. Their evolution either produces a fractal structure resembling a
Sierpinski triangle or a space-time diagram with no apparent structures. We could say such rules
oscillate between easily predictable behavior and chaotic behavior. Their average transients
and periods grow quite fast. See Figure 2.12.

0 20 40 60 80
0

20

40

60

80

100
20 30 40 50 60 70

grid size

0

100

200

300

400

500

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

Rule 126

Figure 2.12: Fractal Class rule 126. The average transient plot is on the left, the space-time
diagram on the right.

2.3.4 Discussion

We have also tried to measure the asymptotic growth of the average attractor size au, u ∈ {0, 1}n

as well as the average rho value defined as ρu = tu + au. This, however, produced data points,
which could not be fitted to simple functions well. This is due to the fact that many automata
have attractors consisting of a configuration, which is shifted by one bit to the left, resp. right,
at every time step. The size of such an attractor then depends on the greatest common divisor
of the size of the period of the attractor and the grid size, and this causes oscillations. We
conclude that such phase-space properties are not suitable for this classification method.

Exhaustive comparison for each ECA is presented in Table 2.13.

Wolfram’s Classification – Discussion The significance of our results for ECAs stems
precisely from the fact that the transient classification corresponds to Wolfram’s so well. As it
is not clear for many rules which Wolfram class they belong to, the main advantage is that we
provide a formal criterion upon which this could be decided.

In particular, rules in Classes Bounded and Log correspond to rules in either Class 1 or
2. Class Exp corresponds to the chaotic Class 3, and Class Lin contains Class 4 together
with some Class 2 rules. We mention an interesting discrepancy: rule 54, which is possibly
considered by Wolfram to be Turing complete, belongs to the Class Exp. This might suggest
that computations performed by this rule can be on average quite inefficient.

Zenil’s Classification – Discussion Zenil’s Classification of ECAs offers a great formalization
of Wolfram’s and seems to roughly correspond to it. Compared to the transient classification,
it is, however, less fine-grained. Moreover, it contains some arbitrary parameters, such as the
data representation and compression algorithm used. In addition, it uses a clustering technique,
which requires data of multiple automata to be mutually compared in order to give rise to
different classes. In contrast, the transient class can be determined for a single automaton
without any context.

Another important difference is that Zenil observed the simulations from a fixed initial con-
figuration; i.e., he examined the local dynamics of ECA. In contrast, the transient classification
is studying their global dynamics.

35

Classification Comparison
ECA Transient Wolfram Zenil Wuensche

0 bounded 1 1 or 2 0
1 bounded 2 1 or 2 0.25
2 bounded 2 1 or 2 0.25
3 bounded 2 1 or 2 0.25
4 bounded 2 1 or 2 0.25
5 bounded 2 1 or 2 0.5
6 log 2 1 or 2 0.5
7 log 2 1 or 2 0.75
8 bounded 1 1 or 2 0.25
9 lin 2 1 or 2 0.5
10 bounded 2 1 or 2 0.5
11 log 2 1 or 2 0.75
12 bounded 2 1 or 2 0.5
13 log 2 1 or 2 0.75
14 lin 2 1 or 2 0.75
15 bounded 2 1 or 2 1
18 fractal 2/3 1 or 2 0.5
19 bounded 2 1 or 2 0.625
22 exp 2/3 1 or 2 0.75
23 log 2 1 or 2 0.5
24 bounded 2 1 or 2 0.5
25 lin 2 1 or 2 0.75
26 log 2 1 or 2 0.75
27 log 2 1 or 2 0.75
28 log 2 1 or 2 0.75
29 bounded 2 1 or 2 0.5
30 exp 3 3 1
32 log 1 1 or 2 0.25
33 log 2 1 or 2 0.5
34 bounded 2 1 or 2 0.5
35 log 2 1 or 2 0.625
36 bounded 2 1 or 2 0.5
37 log 2 1 or 2 0.75
38 bounded 2 1 or 2 0.75
40 log 1 1 or 2 0.5
41 log 2 1 or 2 0.75
42 bounded 2 1 or 2 0.75
43 lin 2 1 or 2 0.5
44 log 2 1 or 2 0.75
45 exp 3 3 1
46 bounded 2 1 or 2 0.5
50 log 2 1 or 2 0.625
51 bounded 2 1 or 2 1
54 exp 2/4 1 or 2 0.75

Classification Comparison
ECA Transient Wolfram Zenil Wuensche

56 log 2 1 or 2 0.75
57 lin 2 1 or 2 0.75
58 log 2 1 or 2 0.75
60 affine 2 1 or 2 1
62 lin 2 1 or 2 0.75
72 bounded 1 1 or 2 0.5
73 exp 3/4 3 0.75
74 log 2 1 or 2 0.75
76 bounded 2 1 or 2 0.625
77 log 2 1 or 2 0.5
78 log 2 1 or 2 0.75
90 affine 2 1 or 2 1
94 log 2 1 or 2 0.75
104 log 1 1 or 2 0.75
105 affine 2 1 or 2 1
106 exp 3 1 or 2 1
108 bounded 1 1 or 2 0.75
110 lin 4 4 0.75
122 fractal 2/3 1 or 2 0.75
126 fractal 2/3 1 or 2 0.5
128 log 1 1 or 2 0.25
130 log 2 1 or 2 0.5
132 log 2 1 or 2 0.5
134 log 2 1 or 2 0.75
136 log 1 1 or 2 0.5
138 bounded 2 1 or 2 0.75
140 log 2 1 or 2 0.625
142 lin 2 1 or 2 0.5
146 fractal 2/3 1 or 2 0.75
150 affine 2 1 or 2 1
152 log 2 1 or 2 0.75
154 bounded 2/3 1 or 2 1
156 log 2 1 or 2 0.75
160 log 1 1 or 2 0.5
162 log 2 1 or 2 0.75
164 log 2 1 or 2 0.75
168 log 1 1 or 2 0.75
170 bounded 2 1 or 2 1
172 log 2 1 or 2 0.75
178 log 2 1 or 2 0.5
184 lin 2 1 or 2 0.5
200 bounded 1 1 or 2 0.625
204 bounded 2 1 or 2 1
232 log 1 1 or 2 0.5

Figure 2.13: Comparing classifications of the 88 unique ECA.

Wuensche’s Z-parameter – Discussion Wuensche suggests that complex behavior occurs
around Z = 0.75, which agrees with the fact that Lin Class rules with a steep slope (rule 110,
62, and 25) have this Z value precisely. However, the Z = 0.75 is in fact quite frequent. This
suggests that thanks to its simplicity, the Z parameter can be used to narrow down a vast
space of CA rules when searching for complexity. However, more refined methods have to be
subsequently applied to find concrete CAs with interesting behavior.

2.3.5 Transient Classification of 2D CA

So far, we have examined the toy model of ECA. Transient classification’s true usefulness would
stem from its application to more complex CAs, where it could be used to discover automata
with interesting behavior.

Therefore, we applied the classification on a subset of two-dimensional CAs with a 3 × 3

36

neighborhood and three states to see whether 2D automata would still exhibit such clear
transient growths.

We work with 2D CAs operating on a finite square grid of size n × n. We consider the
topology of the grid to be that of a torus for each cell to have a uniform neighborhood. We
estimated the average transient length and measured the asymptotic growth with respect to n
(i.e., the size of the square grid’s side). This is motivated by the fact that in a n× n grid, the
greatest distance between two cells depends linearly on n rather than quadratically.

To reduce the vast automaton space, we only considered such automata whose local rules
are invariant to all the symmetries of a square. As there are still 32861 such symmetrical 2D
CAs, we randomly sampled 10 000 of them.

For such a large space, we cannot examine each CA individually. Therefore, we fit the
average transient growth to bounded, logarithmic, linear, polynomial, and exponential functions
to obtain the classes Bounded, Log, Lin, Poly, and Exp. If none of the fits gives a good enough
score (i.e., R2 > 85%), then we mark the corresponding CAs as unclassified. We were able to
classify 93.03% of 10 000 sampled automata with a time bound of 40 seconds for the computation
of one transient length value on a single CPU. We estimate that most CAs are unclassified
due to such computation resources restriction or rather strict conditions we imposed on a good
regression fit. In this large space of 2D CAs, the Exp Class seems to dominate the rule space.
Another interesting aspect in which 2D CAs differ from the ECAs is the emergence of rules in
the Poly Class; the transients of such rules grow approximately quadratically. Moreover, our
results suggest that the occurrence of Bounded Class CAs in 2D is much scarcer as we found no
such CA in our sample. See Table 2.1.

Classification of 2D 3-state CAs (10 000 samples)
Transient Class Percentage of CA

Bounded Class 0%
Log Class 18.21%
Lin Class 1.17%
Poly Class 1.03%
Exp Class 72.62%
Unclassified 6.97%

Table 2.1: Classification of 10 000 randomly sampled symmetric 2D 3-state CA.

We observed the space-time diagrams of randomly sampled automata from each class to
infer its typical behavior. On average, the Log Class automata quickly enter attractors of small
size. Lin Class exhibits the emergence of various local structures. For automata with a more
gradual incline, such structures seem to die out quite fast. Automata with steeper slopes exhibit
complex interactions of such structures. The Poly class automata with a steep slope seem to
produce spatially separated regions of chaotic behavior against a static background. In the
case of more gradual slopes, some local structures emerge. Finally, the Exp Class seems to
be evolving chaotically with no apparent local structures. We present various examples of CA
evolution dynamics in the form of GIF animations here2.

This suggests that the region of Lin Class with a steep slope and Poly class with a more
gradual incline seems to contain a non-trivial ratio of automata with complex behavior. In this
sense, the transient classification can assist us to automatically search for complex automata
similarly to the method designed by [26] where interesting novel automata were discovered by
measuring growth of structured complexity using a data compression approach.

2http://bit.ly/trans_class

37

http://bit.ly/trans_class

2.3.6 Transients Classification of Other Well Known CA

We were interested whether some well-known complex automata from larger CA spaces would
conform to the transient classification as well. As we show in this section, the result is positive.

Game of Life As the left plot in Figure 2.14 suggests, the Turing complete Game of Life
([46]) seems to fit the Lin Class. This is confirmed by the linear regression fit with R2 ≈ 98.4%.

0 20 40 60 80
0

20

40

60

80

20 40 60 80 100
grid size

0.0

0.5

1.0

1.5

2.0

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

1e3 Game of Life

Figure 2.14: Game of Life. The average transient growth plot is on the left. On the right, we
show a space-time diagram at time t = 200 started from a random initial configuration.

Genetically Evolved Majority CA In [105], Mitchell et al. studied how genetic algorithms
can evolve CAs capable of global coordination. The authors were able to find a 1D CA denoted
as ϕpar with two states and radius r = 3 which is successful at computing the majority task
with the output required to be of the form of a homogenous state of either all 0’s or all 1’s. See
Figure 2.15.

0 50 100 150
0

50

100

150

200
50 100 150 200

grid size

20

40

60

80

100

120

av
er

ag
e

tra
ns

ie
nt

 le
ng

th

CA par

Figure 2.15: Cellular automaton ϕpar. The average transient growth plot is on the left. On the
right, we show a space-time diagram simulated from a random initial configuration.

This CA seems to belong to the Lin Class, which is confirmed by the linear regression fit
with R2 ≈ 99.2%.

Totalistic 1D 3-state CA A totalistic CA is any CA whose local rule depends only on the
number of cells in each state and not on their particular position. Wolfram studied various CA
classes, one of them being the totalistic 1D CAs with radius r = 1 and 3 states S = {0, 1, 2}.

In [159], Wolfram presents a list of possibly complex CAs from this class. We applied the
transient classification to such CA and learned that most of them were classified as logarithmic.
This agrees with our space-time diagram observations that the local structures in such CAs

38

“die out” quite quickly. Nonetheless, some of the CAs were classified as linear. An example of
such a CA is in Figure 2.16 where the linear regression fit has R2 ≈ 97.63%.

0 50 100 150 200 250
0

50

100

150

200

250

300
100 200 300 400

grid size

0.0

0.2

0.4

0.6

0.8

1.0
av

er
ag

e
tra

ns
 le

ng
th

1e4 Totalistic CA code 1635

Figure 2.16: Totalistic cellular automaton with code 1635. The average transient growth plot is
on the left. On the right, we show a space-time diagram of the evolution from a random initial
configuration.

2.4 Turing Machines

In order to demonstrate the generality of the transient classification method, we further used
it to examine the dynamics of Turing machines. In this section, we present the classification
results.

2.4.1 Introducing Turing Machines

Informally, a Turing machine (TM) consists of an infinite tape divided into cells and a movable
reading head that scans one cell of the tape at a time. Every cell contains a symbol from some
finite alphabet A, and the Turing machine is at an internal state from a finite set S. Depending
on the symbol the head is reading and on its internal state, the Turing machine changes its
internal state, rewrites the symbol on the tape, and either moves one cell to the left, right
or stays in place. Turing machines represent the most classical model of computation; the
Church-Turing thesis states that “effectively calculable functions” are exactly those that can
be realized by a Turing Machine [148]. For a formal definition of Turing machines as well as a
great introduction to computability theory, see [139].

In this paper, we will consider deterministic Turing machines with one tape. S will always
denote the finite set of internal states, A will denote the finite set of tape symbols. To ensure
the Turing machine operates on a finite grid, as in the case of CAs, we will consider a tape of
finite size with periodic boundary conditions. Therefore, each Turing machine with S and A
operating on a tape of size n gives rise to a global update function

F : An × {1, 2, . . . , n} × S → An × {1, 2, . . . , n} × S,

where each configuration specifies the content of the tape, the position of the head, and the
internal state. Thus, we can apply the transient classification to it. We emphasize the non-
traditional notion of the halting computation that we consider here. Classically, a Turing
machine is considered to halt when it enters an attractor of size 1; that is when it does not
change the tape’s content, the head’s position, or its internal state anymore. In our case, using
the interpretation

transients ≈ computation
attractors ≈ memory

39

we consider a Turing machine to halt whenever it enters any attractor. This is a much weaker
notion of halting.

We will depict the space-time diagrams of TM computation as a matrix, each row corresponds
to the content of the tape at subsequent time steps, and time is progressing downwards. As
opposed to CAs with their inherently parallel nature, TMs are sequential computational models.
Thus, at each time step, only one symbol on the tape is changed. To produce space-time
diagrams comparable to those produced by CAs, we only depict tape contents at every n-th
step where n is the size of the tape. This helps us to intuitively recognize the chaotic dynamics
of TMs, an example is in Figure 2.17.

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

Figure 2.17: Space-time diagrams of a 6 symbol, 5 state TM in the Exp Class. Classical
space-time diagram is shown on the left. On the right we show the space-time diagram depicting
the content of the tape after every 50 steps of computation on a tape of size 50.

To the best of our knowledge, we know of no prior work examining the transients of Turing
machines operating on cyclic tapes.

2.4.2 Transient Classification of Turing Machines

We have studied “small” TMs with the number of states |S| ranging from 4 to 8 and the number
of alphabet symbols |A| ranging from 2 to 5. For every such combination of values |S| and |A|,
we have randomly generated 100 transition functions of TMs and computed each of the TM’s
average transient length estimate for cyclic tapes of sizes ranging from 20 to 400.

Results

For all the considered values of |S| and |A|, more than 90% of the TMs were successfully
classified using the transient classification method. We discuss a particular example in more
detail below.

TMs with 7 states and 4 symbols As an example, we present classification results of 100
Turing machines with 7 states and 4 tape symbols. The results are summarized in Table 2.2.

Bounded Class (41/100 TMs). In this space of rather “small” Turing machines, the Bounded
Class seems to dominate the space. TMs in the Bounded Class halt in time independent on the
tape size. Therefore, for such TMs it seems improbable to perform any nontrivial computation
on both the finite and infinite tape.

Log Class (2/100 TMs) The Log Class seems to be relatively small across all the TM classes
we have examined. Here, the event that a TM head will read the whole input from the tape is
improbable for large tape sizes.

40

Classification of TMs with 7 states and 4 symbols
Transient Class Percentage of TMs

Bounded Class 41%
Log Class 2%
Lin Class 28%
Poly Class 13%
Exp Class 15%
Unclassified 1%

Table 2.2: Classification of 100 randomly sampled TMs with 7 states and 4 symbols.

Lin Class (28/100 TMs.) Let us consider a TM with trivial dynamics, which, given any input
configuration, traverses each cell one by one and changes the state of each cell to the state
0 ∈ S. After all cells enter this state, the computation halts. Such trivial behavior could be
realized in constant time by a CA, though for a TM it takes at least n steps where n is the size
of the tape. Hence, some Turing machines in the Lin Class exhibit periodic or simple dynamics.
This emphasizes the fact that being contained in a Lin or Poly Class seems to be a necessary
condition for complexity, not a sufficient one. See Figure 2.18.

0 10 20 30 40
0

10

20

30

40

50
20 40 60 80

grid size

0

1

2

3

4

av
er

ag
e

tra
ns

 le
ng

th

1e3 7 states, 4 symbols

Figure 2.18: Example of a Turing machine with 7 states, 4 symbols in the Lin Class. Its
space-time diagram seems to exhibit nontrivial behavior.

Nevertheless, we have observed TMs in the Lin Class whose space-time diagrams seem to
contain some higher-level structures.

Poly Class (13/100 TMs.) In the Poly Class we have also observed TMs producing some
higher-order structures.

Exp Class (15/100 TMs.) We find it interesting that once only every n-th row of the
space-time diagram (n being the tape size) is depicted, the space-time diagrams of TMs in the
Exp Class resemble the space-time diagrams of chaotic CAs. See Figure 2.19.

As in the case of CAs, we are aware of the fact that the true asymptotic behavior of TMs in
Lin or Poly Class might turn out to be logarithmic or exponential. In such a case, the systems
in these classes would need significantly longer time to converge to their typical long-term
behavior, which is a typical property of systems at a phase-transition.

2.4.3 Transient Classification of Universal TMs

Without much doubt, universal Turing machines are considered complex. We have estimated
the asymptotic average computation time of 7 universal Turing machines with a small number

41

0 10 20 30 40
0

10

20

30

40

50
5.0 7.5 10.0 12.5 15.0 17.5

grid size

0

1

2

3

4

5

6

7

av
er

ag
e

tra
ns

 le
ng

th

1e3 7 states, 4 symbols

Figure 2.19: Example of a Turing machine with 7 states, 4 symbols in the Exp Class.

of states and symbols constructed by Rogozhin in [131]. All of them were successfully classified,
6 belonging to the Poly class and 1 to the Lin Class. An example is shown in Figure 2.20.

0 100 200 300 400
grid size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

av
er

ag
e

tra
ns

 le
ng

th

1e4 5 states, 5 symbols 0 10 20 30 40
0

10

20

30

40

50

Figure 2.20: Universal TM with 10 states and 3 symbols belonging to the Poly Class. Again,
every 50th step of the computation is shown in the space-time diagram.

Such results agree with the ones obtained for CAs, and support the hypothesis that complex
dynamical systems belong to the Lin or Poly class.

2.5 Random Boolean Networks

Random Boolean networks form a very wide class of discrete dynamical systems that contains
both CAs and TMs. In this section, we show that dynamical systems from this general class
also conformed to our classification method.

2.5.1 Introducing Random Boolean Networks

The classical N − K random Boolean network (RBN) is given by an oriented graph with N
nodes, each one of them having exactly K edges pointing toward it. In addition, each node is
equipped with a Boolean function of K variables. Every node can have the value of either 0 or
1, therefore the configuration space is exactly {0, 1}N . To update a particular configuration of
the network, the values of all nodes are changed in parallel, according to the outputs of their
corresponding Boolean functions. This gives rise to a global update rule F : {0, 1}N → {0, 1}N .
For a concise introduction to RBNs see [47].

RBNs were first introduced by Kaufmann [79] as models of gene regulatory networks.
Classically, the nodes are interpreted as genes of a particular organism; their value represents
whether the gene is “turned on” or “off”. In this setting, the attractors of the network represent

42

different cell types of the organism. Over the years, the networks have been widely studied as
models of cell differentiation [64], immune response [80], or neural networks [160]. The measures
of criticality in RBNs were studied in [92, 123, 154]. A great overview on RBNs is for example
[71].

Critical Behavior in RBNs

RBNs are generic in the sense that both the connections of nodes and the Boolean functions
are chosen uniformly at random. This makes it possible to analytically study the properties of
a typical N −K network. Indeed, different approaches [38, 91]) lead to the same description of
phase transitions in RBNs. We describe the results briefly below, as we will use them in our
experiments.

We will describe a slightly more general model of RBNs. We consider a non-uniform
connectivity of the nodes – for a network of size N , we will assign to each node i ∈ {1, . . . , N}
the connectivity Ki ∈ N and a Boolean function fi of arity Ki. Such a network is parametrized
by the mean connectivity ⟨K⟩ = 1

N

∑︁N
i=1Ki. We also introduce the Boolean function sampling

bias p ∈ (0, 1). That is, we will sample the Boolean functions so that for all i the probability
that fi(x1, . . . xKi) = 1 is p. In [38], the authors have analytically determined the edge of chaos
for RBNs depending on the mean connectivity parameter ⟨K⟩ and Boolean function bias p. By
studying the evolution of the distance between two randomly generated initial configurations
over time, they have shown that the critical values of ⟨K⟩ and p are exactly those satisfying

⟨K⟩ = 1
2p(1 − p) . (2.2)

They obtain the following phases of RBN behavior.

Ordered Phase . . . RBNs with ⟨K⟩ < 1
2p(1 − p)

Critical Phase . . . RBNs with ⟨K⟩ = 1
2p(1 − p)

Chaotic Phase . . . RBNs with ⟨K⟩ > 1
2p(1 − p)

The curve given by (1) is shown in Figure 2.21.
In the next section, we support the analytical results by showing that the transient classifi-

cation clearly distinguishes between the ordered, critical, and chaotic regions.

Phase-Space Properties of RBNs

The generic nature of N−K RBNs makes it possible to analytically study their global dynamics.
This is a key difference between CAs and RBNs: CAs have a very particular architecture
with only local connections and a uniform local transition rule. Therefore, the mean-field
approximation methods of phase-space properties used for a “typical” N −K RBN would not
be as easy to apply to CAs.

With the classical interpretation of RBNs as gene regulatory networks where attractors
represent different cell types, most of the focus has been on analyzing the number and size of
the attractors for different values of N and K. We briefly summarize some results related to
our experiments below. For a more detailed discussion see [71].

Ordered Phase In the ordered phase, when K = 1, it has been shown that a probability of
having an attractor of size l falls exponentially with l [43]. For a subset of K = 2 RBNs with
ordered behavior, it has been shown in [93] that their average transient time grows at most
logarithmically with the network size N .

43

0.0 2.5 5.0 7.5 10.0 12.5 15.0
K

0.0

0.2

0.4

0.6

0.8

1.0

p

Figure 2.21: Red curve depicts the critical values of RBN mean connectivity ⟨K⟩ and Boolean
function bias p. The blue area denotes the region of ordered behavior, white area denotes the
chaotic region.

Chaotic Phase In the case when p = 1
2 and K ≥ N , the RBN is essentially a random mapping

whose phase-space properties have been studied extensively. It has been shown that both the
average attractor and transient lengths of such RBNs grow exponentially with increasing N
[37, 61].

We note that some previous work examining the transients of RBNs was conducted in [19]
and [160] but we are not aware of any studies, which would use the asymptotic transient growth
to describe the behavior of RBNs at the critical region.

2.5.2 Transient Classification of RBNs

We have sampled RBNs parametrized by the mean connectivity ⟨K⟩ and the Boolean function
bias p. In this section we show that the results of transient classification clearly distinguish the
ordered, critical, and chaotic phase of RBNs.

Details of the Experiment

Our goal is to estimate the average transient length of a “typical” RBN of size N , with mean
connectivity ⟨K⟩ and Boolean function bias p. We would do so for increasing N to observe the
asymptotic behavior. We proceed as follows:

1. Given N, ⟨K⟩, and p, we generate a RBN R(N, ⟨K⟩, p) with the corresponding parameters.
We estimate the average transient length T (R(N, ⟨K⟩, p)) of R(N, ⟨K⟩, p) using the
approach described in Section Average Transients: Error Estimate.

2. We repeat step 1. and generate a sequence of RBNs

R1(N, ⟨K⟩, p), R2(N, ⟨K⟩, p), . . . , Rm(N, ⟨K⟩, p)

and their average transient lengths

T (R1(N, ⟨K⟩, p)), . . . , T (Rm(N, ⟨K⟩, p))

to ensure that we are close to the the average transient length of an average RBN with
parameters N , ⟨K⟩, and p. We determine the number of sampled RBNs needed to get

44

sufficiently close to the true average behavior by method analogous to the one described
in Average Transients: Error Estimate. Finally, we obtain the typical average transient
length as

T (N, ⟨K⟩, p) = 1
m

m∑︂
i=1

T (Ri(N, ⟨K⟩, p)).

3. We try to approximate the sequence (T (N, ⟨K⟩, p))∞
N=1 by generating a finite part of it.

We typically compute (T (N, ⟨K⟩, p))200
N=5, the upper bound being either N = 200 or the

limit imposed by the computation time of the transient lengths.

2.5.3 Results

Ordered Phase We have computed Kc, p along the curve given by (1) for p = 0.1, 0.2, . . . , 0.9
and sampled RBNs with parameters ⟨Kc − 1⟩, p to ensure we are in the ordered region. See
Figure 2.22.

0 50 100 150 200
grid size

2

3

4

5

6

7

av
er

ag
e

tra
ns

 le
ng

th

RBNs with K=1.0, P=0.5

0 50 100 150 200
grid size

2

4

6

8

10
av

er
ag

e
tra

ns
 le

ng
th

RBNs with K=4.556, P=0.9

Figure 2.22: Growth of typical average transient lengths for RBNs in the ordered region. RBN
with mean connectivity ⟨K⟩ = 1 and Boolean function bias p = 0.5 on the left, RBN with
⟨K⟩ = 4.556 and p = 0.9 on the right. The best fit for both was logarithmic, with R2 score over
90%.

For all such ensembles of RBNs the best fit for the typical average transient asymptotic
growth was logarithmic. This supports the analytical results proven for special cases of K and
p values.

Critical Phase We have sampled RBNs with parameters ⟨Kc⟩, p along the curve given by
(1) for p = 0.1, 0.2, 0.3, . . . , 0.9. In all the sampled cases, the best fit for the typical average
transient growth was linear. As in the case for CAs, we are aware that the asymptotic behavior
of such RBNs can turn out to be logarithmic or exponential and that we just might not have
sampled large enough networks. In such a case, we can interpret the Lin Class as a region of
RBNs that take significantly longer to converge to their asymptotic behavior. See Figure 2.23.

Chaotic Phase We have computed the critical values Kc, p along the curve given by (1) for
values p = 0.2, 0.3, . . . , 0.7, 0.8 and sampled RBNs with parameters ⟨Kc + 2⟩, p to ensure we
are in the chaotic region. For all such ensembles of RBNs, the best fit for the typical average
transient asymptotic growth was exponential, which again agrees with the analytic results. See
Figure 2.24.

These experiments support the results obtained for CAs and TMs indicating that ordered
discrete systems belong to the Bounded or Log Class, chaotic systems correspond to the Exp
Class, and complex systems lie in the region “in between”, corresponding to the Lin and Poly
Class.

45

0 20 40 60 80 100
grid size

5

10

15

20

25

av
er

ag
e

tra
ns

 le
ng

th

RBNs with K=2.0, P=0.5

0 25 50 75 100 125 150
grid size

5

10

15

20

25

av
er

ag
e

tra
ns

 le
ng

th

RBNs with K=2.381, P=0.7

Figure 2.23: Growth of typical average transient lengths for RBNs in the critical region. RBN
with mean connectivity ⟨K⟩ = 2 and Boolean function bias p = 0.5 on the left, RBN with
⟨K⟩ = 2.381 and p = 0.7 on the right. The best fit for both was linear, with R2 score over 95%.

10 20 30 40
grid size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

av
er

ag
e

tra
ns

 le
ng

th

1e3 RBNs with K=4.0, P=0.5

10 20 30 40
grid size

0.0

0.2

0.4

0.6

0.8

1.0
av

er
ag

e
tra

ns
 le

ng
th

1e3 RBNs with K=4.083, P=0.4

Figure 2.24: Growth of typical average transient lengths for RBNs in the chaotic region. RBN
with mean connectivity K = 4 and Boolean function bias p = 0.5 on the left, RBN with
K = 4.083 and p = 0.4 on the right. The best fit for both was exponential, with R2 score over
99%.

2.6 Conclusion

We presented a classification method based on the asymptotic growth of average computation
time. It is applicable to any deterministic discrete space and time dynamical system. We did
present a good correspondence between the transient and Wolfram’s classification in the case of
ECAs. Further, we did show that the classification works for 2D CAs, Turing machines, and
random Boolean networks, and we used it to discover 2D CAs capable of emergent phenomena.
By demonstrating that complex discrete systems such as Game of Life, rule 110, several universal
TMs, or RBNs with critical parameter values belong to the Lin or Poly Class, we believe that
linear and polynomial transient growth navigates us toward a region of complex discrete systems.

Another elegant alternative would be to merge the Bounded and Log Class representing the
ordered phase, and the Lin and Poly Class corresponding to the critical phase. In this way, we
would obtain the traditional three phases of dynamics. This is entirely possible; we have kept
the five classes to respect our initial experiments on elementary CAs where we obtained a much
finer classification scheme.

The classification is based on a very simple idea and can be implemented with a few lines
of code. In the field of ALife where novel discrete dynamical systems are designed as possible
models of artificial evolution, the method we presented can be used to check whether such
systems belong to the Lin or Poly Class. This might support the claim that such systems are
capable of complex dynamics and emergent phenomena.

46

2.7 Future Work

We are interested in examining the transient growth of recurrent neural networks (RNNs). In
the simplest case, we can add a “rounding off” output layer to discretize the configuration
space. Then, the transient classification could be used to study the dynamics of RNNs, possibly
guiding us towards appropriate network initializations and overall architectures yielding complex
dynamics.

It would also be interesting to examine Busy Beaver Turing machines. Those are such TMs
which take the longest time to halt (in the classical sense) among all TMs with the same number
of states and tape symbols when run from an empty tape. It is interesting to observe how such
machines behave when run from a randomly sampled initial configuration and whether they
would exhibit complex dynamics, possibly being computationally universal [166].

Lastly, we could examine the dynamics of systems when simulated from a special region of
its configuration space. The initial configurations could be generated by a designated algorithm,
possibly discovering completely different dynamics of the system, as opposed to its average
behavior.

47

3. Dynamical Phase Transitions in
Graph Cellular Automata
3.1 Introduction

Dynamical systems can produce complex behaviour by iterating very simple local rules [104].
One of the simplest classes of such systems are Cellular Automata (CAs) [76, 134, 157]. They
are a popular model system due to the fascinating structures produced in their dynamics’
visualizations [162]. Analysing the global dynamics of CAs is, however, notoriously difficult and
many such problems are in fact proven to be undecidable [29, 74]. One aspect of the hardness
comes from the fact that the regular connectivity grid of CAs imposes significant correlations
between the cells.

There are numerous ways the CA regular grid structure can be relaxed to obtain a system
amenable to analysis by statistical physics. For example, the cell (or node) connectivity can
be given by a random directed graph; and a (possibly different) update rule can be randomly
generated for each node. This architecture gives the synchronous, deterministic, discrete
dynamical systems called Random Boolean Networks (RBNs) [2]. Such a significant relaxation
famously allows the RBNs’ global dynamics to be analysed using mean field calculations and
annealed approximations [38, 91, 140].

In this work, we study a more subtle relaxation of the CA structure. We consider systems
where the connectivity of the nodes is determined by a random regular graph. All nodes in
this network are updated synchronously by a fixed, identical local update rule. It is natural
to call such systems Graph Cellular Automata (GCAs), although variations are known as
Network Automata [38]. GCAs are very close to the CA architecture, and as such, it is still a
challenge to study their dynamics analytically. Even the annealed calculation of the number
of point attractors is non-trivial compared to the RBNs due to the non-directed nature of the
interactions, see e.g. [31]. The main goal of this paper is to showcase a set of statistical physics
tools and demonstrate that they are powerful enough to give asymptotically exact analytical
results about the global dynamics of these discrete dynamical systems. Concretely, we use
the dynamical cavity method (DCM) [69, 73, 78, 88, 102, 111] and its backtracking version
(BDCM) [15] to give new results about the global dynamics of a specific subclass of GCAs. This
class can be intuitively understood using the terminology of opinion dynamics.

Specifically, we study GCAs with conforming non-conformist update rules. They have binary
states {0, 1} and each node is updated in the following manner:

• if the states in a node’s neighbourhood are strongly aligned (i.e., the majority wins by at
least 2θ of neighbours being in the same state), the node follows the majority state in its
neighbourhood

• otherwise, if the majority only has a slim lead over the minority (i.e., the majority wins
by less than 2θ neighbours being in the same state), the node gets updated in one of the
following non-conformist ways:

– type 1. independent stubborn: the node keeps its state
– type 2. independent volatile: the node changes its state
– type 3. anti-conformist: the node follows the minority

All nodes are updated synchronously and deterministically, using the same update rule, either of
type 1., 2., or 3 for a given value of θ ∈ N0. The relevance of the conforming non-conformist rules
stems from the fact that their dynamics can be interpreted as an opinion-formation process.

48

We note that the literature on opinion dynamics and its analysis through statistical physics
is abundant [23, 52]. There is a plethora of connectivity topologies and update schemes that
have been studied [6, 44, 144]. Some are particularly relevant to our work, as they study the
co-existence of conformist and anti-conformist behaviour [45, 51, 110, 114].

The type of dynamical analysis that is of relevance in the context of opinion formation
dynamics, is usually related to the dependence between the initial configurations and a type of
attractor the system converges to. Some exemplary questions are:

• Which initial configurations can lead to consensus, and how fast?

• Which initial bias allows all opinions to prevail on the graph for a prolonged period of
time?

To answer these questions, we consider the density or bias of a binary configuration, which is its
average number of 1s, and we show that various conforming non-conformist GCAs converge to
qualitatively different types of attractors depending on the density of their initial configuration.
When we consider graphs with many vertices n, in the large system size limit, the transitions
between these regions of different behaviours (e.g. finding consensus or having disagreement)
become sharp: The probability to sample initial configurations that exhibit any other behaviour
than what is typical for the region is going to zero. Because the behaviours we distinguish
relate to the system’s dynamics, such a sharp transition is called a dynamical phase transition.

The DCM and BDCM allow us to analytically identify values of initial densities where such
a phase-transition occurs. This can be confirmed by numerical experiments which show that
around the phase-transition, the system takes longer to converge to its typical attractor; a
form of critical slowing down. Some of the results presented here have previously been used to
illustrate the BDCM in the paper that introduced the backtracking version [15]. We expand on
them, by discussing their relevance in the context of cellular automata and opinion dynamics,
and add results for new classes of such dynamical systems.

Concretely, we show that for multiple GCAs with conforming non-conformist rules, configu-
rations with low initial density values almost always converge to the homogeneous attractor of
only 0s fast (consensus). However, above a certain initial density threshold, the systems instead
exhibit more complex behaviour, which will be the object of our analysis with the (B)DCM.
For example, in the case of a rule always following the majority, above a certain initial density
threshold the system instead converges to an attractor oscillating between two configurations of
mixed states. Another interesting type of phase-transition occurs for the anti-conformist rules of
type 3 (following the minority instead of the majority when the race is tight). There, as shown
in Fig. 3.1, for low values of initial configuration densities, the system converges to an all-0
consensus in time proportional to the logarithm of the network size. However, above a certain
initial density threshold, the system instead takes an exponentially long time to converge.

These observations bring us back to the notoriously hard-to-analyse CAs discussed at the
beginning: It is a long-standing challenge in the area of discrete systems to precise the emergence
of complexity [87] and to identify a region of systems with complex behaviour [84]. In multiple
works on classifying dynamics of cellular automata, the typical behaviour of the system is
assessed by averaging over randomly sampled initial configurations [12, 38, 67, 86]. Specific
analyses with respect to the initial configuration are the exception [7]. Our results emphasize
that for certain systems, averaging the system’s behaviour over initial configurations might be a
coarse process, insensitive to the particularities of different initial configuration regions. For the
anti-conformist rule we investigate, it is indeed the case that depending on the choice of initial
configurations, the system either converges fast to a homogeneous attractor (simple regime), or
it enters a chaotic regime. The qualitative difference in the rule’s behaviour in the two phases
is significant, see Fig. 3.1.

To summarize, in this work we show that the DCM and BDCM methods are powerful
tools for analysing discrete dynamical systems. We demonstrate the existence of systems with

49

rapid phase

n = 75

ti
m

e
=

10
0

density = 0.2

n = 75

density = 0.3

0.3 0.7

d
en

si
ty

ev
ol

u
ti

on

tim
e

space

ρinit = 0.2

0.200 0.210 0.220 0.230

density ρinit

0.0

0.2

0.4

0.6

0.8

1.0

P
[c

h
ao

ti
c

p
h

as
e]

103

104

105

106

n

dynamical phase transition

ρinit ∼ 0.217

theoretical extrapolation empirical estimate

chaotic phase

n = 75

ti
m

e
=

10
0

density = 0.2

n = 75

density = 0.3

0.3 0.7

d
en

si
ty

ev
ol

u
ti

on

ρinit = 0.3

Figure 3.1: A phase transition diagram for a particular instance of a 5-regular GCA
with a conforming anti-conformist rule 001011. An illustration of the system’s two phases
that depend on the density (i.e., the average number of black-coloured nodes) in the initial
configuration. The phases are illustrated by space-time diagrams for a system of size n = 1000
nodes, though only a window of 75 nodes is shown. (Left) Rapid phase: Fast convergence to the
all-0 attractor. (Right) Chaotic Phase: Apparent randomness in the nodes state, convergence
takes longer. (Middle) In the large system limit, when n → ∞, there is a dynamical phase
transition. At a particular initial density value ρinit, the typical behaviour of the system abruptly
switches from the rapid to the chaotic phase. For each ρinit and each system size n we sampled
1024 initial configurations with the given ρinit and computed how often the system enters a
chaotic phase. For practical purposes, we conclude the system is in a chaotic phase if it does
not converge within 100 ∗ log2(n) time-steps. The resulting frequency exhibits a sharp phase
transition between 0.217 and 0.218, where the solid red line is our prediction from the DCM
and the shaded red area comes from an empirical approximation. This transition separates the
behaviour on the left and the right.

dynamical phase transitions between ordered and chaotic behaviour, and provide an analytical
approach to identifying the transition between the two phases. From the perspective of opinion
dynamics, we introduce a new twist on the majority dynamics where nodes are non-conforming
when the majority only has a slim lead. Our analysis then shows how an initial bias affects the
prevalence of both opinions and the time to reach a consensus or stable configuration. From
the perspective of cellular automata, we narrow the gap between the popular systems on the
grid and those amenable to statistical physics.

Note that the results presented in this paper have a certain overlap with the results presented
in [15] by the same authors. The paper [15] was focused on the backtracking DCM that was
introduced there and some of the GCAs that correspond to zero temperature dynamics in spin
systems were discussed to illustrate the power of the method. The present paper is focused on
a more generic class of cellular automata and their behaviour and the BDCM together with
DCM are used as methods known from the existing literature.

3.2 Terminology and Notation

By an undirected graph of size n we understand the tuple G = (V,E) where V = {1, . . . , n} is
the set of nodes and E = {{i, j} | i, j ∈ V } is the set of edges. For each node i ∈ V we define
the neighbourhood of i to be the set ∂i = {j | {i, j} ∈ E} ⊆ V ; and we define the degree of i as
d(i) = |∂i|. We say an undirected graph is d-regular if each node has degree d.

Let G be a graph with n nodes and let S be a finite set of states. Each node i can be
assigned a state xi ∈ S; we represent such an assignment by the sequence x = x1 . . . xn ∈ Sn

50

3-regular graph G

1 2

34

5 6

states S = {0, 1}

local rule f(w; {u1, u2, u3}) ={︄
1 if u1 + u2 + u3 ≥ 2
0 otherwise

configuration
1 2 3 4 5 6

x =

space-time diagram
F
F
F
F

with global rule F

part of the configuration graph

attractor

transient

Figure 3.2: Example of a GCA and its dynamics. (Left) Defining the GCA from a 3-regular
graph G, state set S, and local rule f following the majority. (Middle) A configuration x (0
is white and 1 is black) and the GCA’s space-time diagram starting from x. (Right) For the
majority GCA defined on the left, we show a part of its configuration graph.

and call it a configuration.

Graph Cellular Automata. Let S be a finite set of states. A Graph Cellular Automaton
(GCA) is a discrete dynamical system that operates on configurations of some graph with n
nodes. In this work we only consider the case of random d-regular graphs. The state of each
node gets updated synchronously, depending on its own state and the state of its neighbours;
each node uses an identical local update rule f : S×Sd → S. This gives rise to a global mapping
F : Sn → Sn governing the dynamics of the system. For a configuration x ∈ Sn, the i-th node
with neighbourhood ∂i = (i1, . . . , id) gets updated according to

F (x)i = f(xi;xi1 , . . . , xid
).

We write a semicolon to highlight that the first entry of f is always the state of the node being
updated.

Global Dynamics. Let F : Sn → Sn be the global rule of some GCA. We will use the
symbol x to denote a sequence of configurations from Sn; i.e., x = (x1, ...,xt) for some t ∈ N.
If x satisfies that xi+1 = F (xi) for each i we call it the GCA’s trajectory of length t starting
from the initial configuration x1. We call a matrix whose rows are configurations of a GCA at
consecutive times its space-time diagram.

Since the configuration space is finite, each long enough trajectory becomes eventually
periodic. We call the preperiod of the sequence the transient and its periodic part the attractor
or limit cycle. For an attractor, the set of configurations converging to it is called its basin of
attraction.

We define the configuration graph (also called the phase-space) as an oriented graph whose
vertices are the configurations from Sn with edges of the form (x, F (x)), x ∈ Sn. The notions
we defined are illustrated in Figure 3.2 and an example of the complete configuration graph for
the majority rule on a graph with 12 nodes is shown in Figure 3.3.

Outer Totalistic GCAs. A GCA is outer totalistic if its local update function “does not
distinguish between node’s neighbours”. A local rule f of an outer totalistic GCA is thus a
function of a node’s state and the set of states of its neighbours (oblivious to the ordering of
the neighbours). We highlight this by writing the global dynamics in the form:

F (x)i = f(xi; {xj}j∈∂i
).

51

original configuration graph

Figure 3.3: Complete configuration graph of a majority GCA. Every node is a unique
configuration of the system. The edges show how the dynamics evolve from one configuration
into another. The different colours distinguish configurations that eventually evolve into different
types of attractors. The orange colour marks configurations leading to cyclic attractors of size
2 marked red, the blue configurations converge to point attractors in cyan. This is the absolute
majority rule, the GCA with code 0011 on a 3-regular graph with n = 12 nodes.

For example, f : {0, 1}4 → {0, 1} given by f(w;u1, u2, u3) = (u1 +u2 +u3) mod 2 gives rise to a
totalistic GCA whereas copying neighbour u2’s opinion given by g(w;u1, u2, u3) = u2 does not.

Outer Totalistic GCA Codes We restrict our study to outer totalistic GCAs with states
S = {0, 1}. In such a case, the local rule f : {0, 1} × {0, 1}d → {0, 1} is characterized by a
sequence of unary Boolean functions (f0, f1, . . . , fd), where for each 0 ≤ k ≤ d, the function
fk : {0, 1} → {0, 1} dictates how a node changes its state if exactly k of its neighbours are in
state 1. We further introduce a symbol for each unary Boolean function:

0 . . . constant 0 function
+ . . . identity function
1 . . . constant 1 function
− . . . negation

Thus, each local rule f of an outer totalistic GCA on a d-regular graph is characterized by a
d+ 1-tuple of symbols (s0, s1, . . . , sd) ∈ {0, 1,+,−}d+1. We will call this symbol sequence the
code of the rule.

For example, for d = 3, the code + + ++ denotes the local update rule that preserves the
state of each node; and the code 0011 represents a rule that updates each node based on the
majority state of its neighbours. We note that an analogous representation has been introduced
for example in [95].

3.3 Conforming Non-Conformist GCAs

In this paper, we study a class of outer totalistic GCAs with conforming non-conformist update
rules (CNC). An update rule of an outer totalistic GCA on a d-regular graph with states
S = {0, 1} is CNC with threshold θ ∈ N0 if it updates each node in one of the following ways:

• strong agreement region: if the majority wins by at least 2θ of nodes; i.e., |
∑︁

j∈∂i xj −
d
2 | ≥ θ; the node conforms to the majority of its neighbours

• weak agreement region: if the majority wins by less than 2θ of nodes; i.e., if
|
∑︁

j∈∂i xj − d
2 | < θ; the node gets updated in a non-conformist way:

– stubborn independent: the node keeps its state; code type “0+1”
– volatile independent: the node changes its state; code type “0−1”

52

– anti-conformist: the node follows the minority of its neighbours; code type “0101”

All the nodes in the network get updated synchronously, using the same update rule, either of
type 0+1, 0−1, or 0101. As an example, for d = 5, the anti-conformist GCA with threshold
θ = 1 corresponds to the rule with code 001011, and θ = 2 gives the rule with code 011001.

We note that an odd connectivity d and θ = 0 imply that all neighbourhood configurations
result in a strong agreement region. In such a case, a node always conforms to the majority
and this gives the well-studied case of absolute majority rules with code type “01”. Whenever
θ ≥ 1, some neighbourhood configurations result in a weak agreement region where the rules
0+1, 0−1, or 0101 demonstrate different forms of non-conformist behaviour.

The anti-conformist case of CNC rules has a particularly interesting interpretation in
the context of opinion making: if the agreement of one’s neighbours is weak, one has enough
“courage” to demonstrate an attitude different from the majority. However, once the neighbours’
opinion alignment is too strong, one conforms to the opinion of the majority.

Short Attractors. An important property of the CNC GCAs is that for an arbitrary system
size, they only seem to have short attractors. As we will see, this is a crucial property that
allows us to apply the BDCM method and analyse properties of the most typical attractor of
the CNC GCAs.

Specifically, the absolute majority rules, together with the stubborn and volatile independent
rules belong to a wider class of majority threshold rules which, irrespective of the system size,
only have attractors of size 1 and 2. This applies to an arbitrary topology of the connectivity
network, as long as it has undirected edges. This has been proved in [50] using an elegant
argument by introducing a decreasing energy function for such systems.

For the case of anti-conformist CNC rules, we so far lack a proof of such a property. However,
the numerical results suggest that attractors larger than 2 are not typical for anti-conformist
GCAs of large size, as we only rarely sampled them (Appendix, Fig. 3.14). We note that the
topology of a random regular graph seems crucial here as for preliminary experiments on a
regular grid we encountered attractors larger than 2.

Related Work. The class of CNC rules, seemingly simple, contains systems with a wide
variety of behaviour that have received a lot of attention in the literature, although not always
in exactly the synchronous setting on random regular graphs. The interest is due to the rules’
relevance in different application fields. For cellular automata, typically on lattices, density
classification is used as a vehicle for reasoning about their computational capabilities [21, 135].
Bootstrap-percolation [164] or the zero-temperature Glauber dynamics [30, 109] can also be
modelled with CNC rules and are approached on various types of graphs.

The CNC rules also play a prominent role in modelling opinion spreading. The co-existence
of conformist and anti-conformist dynamics has been studied in models of collective behaviour
[51, 114]. However, the co-existence is typically introduced in one of the two following ways:

1. The network consists of two types of nodes, conformist ones that always follow the majority
and anti-conformist ones always following the minority.

2. With probability p a node gets updated using a majority rule, and with probability 1 − p
it gets updated in an anti-conformist way.

In contrast, for the conforming non-conformist rules as considered in the present paper, the
behaviour of a node is entirely determined by the nodes in its neighbourhood, not by external
probabilities. We show two examples of such dynamic behaviour in Figure 3.4, where for the
anti-conformist GCA 001011 and the volatile independent GCA 00 − 11 we show three different
initializations and their long-time behaviour in space-time diagrams.

53

anti-conformist: 001011 volatile independent: 00–11

Figure 3.4: Space-time diagrams. We show two examples for conforming non-conformist rule
dynamics on small random regular graphs with n = 100 nodes. (Left) The anti-conformist GCA
001011, in this case, the time axis is broken for visualization purposes, as for some samples the
time to an attractor is extremely long. (Right) The volatile independent GCA 00 − 11.

The connection between the CAs and opinion dynamics on graphs is discussed in [7]. All
the mentioned applications directly raise relevant questions on the dynamics, e.g. how quickly
or if at all one can reach consensus given an initial configuration [73, 121]. In the following, we
show how to answer such questions for these seemingly simple but ubiquitous rules.

3.3.1 Types of Dynamical Phases

For conforming non-conformist GCAs we identify a number of qualitatively different phases the
system exhibits when varying the density of 1s in the initial configuration. For the transients,
we distinguish phases of slow and fast convergence. For the attractors, we distinguish between
attractors of size 1 and 2, between the density of 1’s in the attractor’s configurations and
the portion of nodes that are changing their state in a cyclic attractor. We call a specific
combination of a transient and attractor type a dynamical phase. A dynamical phase transition
is an abrupt, non-analytic change from one dynamical phase to another. It is the critical point
where the system exhibits different qualitative behaviours on either side of the transition. This
is defined in the large n limit, when the system has many interacting nodes.

To define this formally, let x = (x1, ...,xp, ...,xp+c) be a trajectory of a threshold GCA with
a transient of length p leading into an attractor of length c.

Initial configuration. We define the density or bias of a configuration x ∈ {0, 1}n, x =
(x1, . . . , xn), as:

ρ(x) = 1
n

n∑︂
i=1

xi. (3.1)

The initial density for the trajectory x is ρinit(x) = ρ(x1). We will show that as we vary
ρinit, the system exhibits changes in the phase it converges to that become more and more
abrupt as the system size grows n → ∞.

54

icon attractor description parameters

homogeneous
stable

almost only point attractors with almost all nodes in
state 0 or almost all nodes in state 1

c = 1
ρattr ∈ {0, 1}

mixed-colour
stable

almost only point attractors where at least a
constant fraction of both 0’s and 1’s is present

c = 1
ρattr ∈ (0, 1)

partially rattling almost only 2-cycles with at least a constant fraction
of both rattling and stable nodes

c = 2
α ∈ (0, 1)

all-rattling almost only 2-cycles with almost all rattling nodes c = 2
α = 1

Table 3.1: Four types of attractors, marking different destinations of their dynamical behaviour.
We emphasize that our definition makes the distinction for α and ρattr only up to to a finite
fraction Θ(n) of the nodes. This disregards a subleading number o(n) of nodes that might have
a different state in the homogeneous stable attractor, or o(n) nodes that are not rattling in the
all-rattling attractor. Likewise, the phases ignore o(n) of transients which converge to attractors
with limit cycle lengths with c /∈ {1, 2}. (Informally, g(n) ∈ Θ(f(n)) if g grows with the same
order as f and g(n) ∈ o(f(n)) if g grows slower than f .)

Transient types. We say that the convergence to an attractor is rapid (ordered), if the
transient length p as a function of the system size n grows in O(logn). Similarly, convergence
is chaotic, if it takes a long time and p grows in Θ(expn). We conjecture from the numerical
investigations that intermediate transient lengths do not appear in the systems considered here.

Attractor types. In general, we define the density of a limit cycle/attractor of length c as
the average density over all its configurations:

ρattr(x) = 1
c

c∑︂
t=1

ρ(xp+t). (3.2)

For all attractors of size c > 1, we say that the i-th node is a rattler if it changes its state at
least once in the limit cycle. Otherwise, we say that the i-th node is stable. We define the
activity of a limit cycle as the average number of its rattlers, formally:

α(x) = 1
n

∑︂
i∈V

1

⎡⎣1 ≤
p+c−1∑︂
t=p+1

1[xt
i ̸= xt+1

i]

⎤⎦ (3.3)

With these definitions, we distinguish the four attractor types in Table 3.1.

Empirical Locations of Dynamical Phases. On finite systems, we can empirically measure
all the previously defined properties and their scaling in the graph size n. For now, we explore
GCAs with four rules: The absolute majority rule, and three rules with the different possible
non-conforming behaviours under weak agreement (stubborn, volatile independent, and anti-
conformist). Fig. 3.5 shows the transient length scaling in n and the attractor’s density ρattr
and activity α in terms of initial density ρinit.

Clearly, for all four rules the homogeneous all-zero and all-one state is an attractor of the
dynamics. We observe that when the initial bias is close to such a homogeneous attractor the
convergence to it is rapid for all four rules. All the studied rules undergo a phase transition for
some value ρinit which jointly occurs with a slowing down of the convergence (an increase in
transient lengths).

The anti-conformist rule’s behaviour stands out, where the exponentially long transients lead
to the all zero or all one attractor with equal probability. For the other three rules (majority,

55

0.0

0.2

0.4

0.6

0.8

1.0

d
en

si
ty
ρ

a
tt

r

001011
anti-conformist

0.0

0.2

0.4

0.6

0.8

1.0

0011
absolute majority

0.0

0.2

0.4

0.6

0.8

1.0

00 + 11
stubborn independent

0.0

0.2

0.4

0.6

0.8

1.0

00− 11
volatile independent

0.0

0.2

0.4

0.6

0.8

1.0

ac
ti

v
it

y
α

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

101

103

105

tr
an

si
en

t
p

n
50

100

150

200

101

102

100

101

102

101

102

n
103

104

105

106

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

10−2

10−1

100

10−2

10−1

100

Figure 3.5: Numerical experiments for four types of CNC rules for d = 3, 4, 5. For rules
0011, 00 + 11 and 00–11 we sampled 1024 graphs for every n ∈ {103, 104, 105, 106} and every
initial density ρinit = k

100 , k ∈ {0, 1, . . . , 100}. For 001011, due to the exponential explosion of
the transient length in ∼ (0.2, 0.8), we used n ∈ {50, 100, 150, 200}. (First and second row)
Histograms of the properties of attractors: their density and the fraction of rattlers. With the
exception of GCA 001011, they were computed for n = 103 with a binning on the y-axis for
both ρattr and α and 101. For the GCA 001011 graphs of size n = 200 and 51 bins were used.
(Third row) Average transient length p for 0011, 00+11 and 00–11; median transient length for
001011. We observe behaviour consistent with either exponential or logarithmic growth of the
transient lengths as a function of the system size. (Last row) Diagram showing the dynamical
phases corresponding to each of the attractor and transient type. Transitions between the
phases correspond to peaks in the transient length or a change in the scaling of the transient
regime. Note that the same data for the rules 00+11 and 00–11 were already used in [15] to
illustrate the results that the BDCM can obtain.

56

stubborn/volatile independence) the slowing down is within the O(logn) regime, just with a
larger growing prefactor in the vicinity of the phase transition. For the volatile independence
rule, there are even two such transitions. The transient behaviour for anti-conformist rule is
very different. It switches from the short O(logn) to the long Θ(expn) transients around the
critical point close to ≈ 0.2 and ≈ 0.8. The long transients are maintained throughout the
dynamical phase.

The different phases confined by those transitions occur as follows: The absolute majority
rule on the 3-regular graphs phase rapidly converges to the partially rattling state, where a
core is stable, and some nodes are changing their opinion at every iteration. The stubborn
independent rule on the 4-regular graph produces an attractor with mixed (i.e. 0 and 1)
stable opinions which is reached rapidly. The volatile rule, coming from the homogeneous
all-zero attractor and increasing ρinit, first goes through a dynamical phase of rapid convergence
towards a partially rattling state, similar to the majority rule before. For very weak initial bias,
eventually all nodes keep switching their colors – the all-rattling attractor.

Previous work identified similar dynamical phases for the threshold q-voter model [151],
although that work considers a thresholded, noisy version of the majority rule.

We further highlight that the transitions only become sharp for large n. For smaller finite
systems and particular initial density values ρinit, we can observe the co-existence of phases
at both sides of the transitions. For example, this happens for the two GCAs on small graphs
with n = 100 nodes that are shown in Fig. 3.4, Section 3.3.

In Appendix 3.7 we provide some empirical results for examples with larger degrees. For rules
which belong either to the absolute majority, stubborn and volatile independent rules, scaling
the threshold θ as O(1/

√
d) exhibits the same transitions as the degree d grows, consistent with

the type of large d behaviour observed in [14]. For the anti-conformist the picture is less clear
as new types of behaviour emerge that are different from what we observed for the GCA 001011.
Overall, we leave thorough empirical and theoretical investigations of larger degrees and their
appropriate parameterizations to future work.

In the remaining Sections, we supplement our empirical results with a theoretical analysis
of the precise positions of the phase transitions. For this, we first introduce the (backtracking)
dynamical cavity method in Section 3.4, and then present the derived analytical dynamical
phase transitions in Section 3.5.

3.4 Dynamical Cavity Methods

To analyse the dynamics of the previously introduced family of CNC GCAs, we use the dynamical
cavity method (DCM) [69, 73, 78, 88, 102, 111] and its extension, the backtracking dynamical
cavity method (BDCM) [15]. These methods are inspired by the cavity method from statistical
physics which has proven its success in the analysis of static systems [101]. While their results
hold for the thermodynamic limit, i.e. when the number of nodes n tends to infinity, we will see
that the behaviour of systems with relatively small n already corresponds well to the theoretical
predictions for large n.

Both methods consider motifs from the configuration graph (Fig. 3.3) that represent dynam-
ical phenomena as the static element of a cavity analysis. The idea of the DCM is to take finite
trajectories from the configuration graph. Similarly, the BDCM considers finite trajectories
that lead into cycles of a fixed length. A general motif that encompasses both ideas is the
backtracking attractor, defined as

x = (x1,x2, . . . ,xp,xp+1, . . . ,xp+c) ∈ (Sn)p+c ,

for p, c ∈ N where the first p configurations compose a transient and the last c configurations
a limit cycle. Therefore, c = 0 gives the trajectories without attractors for the DCM and
c > 0 gives the BDCM. Despite the static methodology, the backtracking attractor is inherently

57

dynamic, so the static analysis allows one to infer back results about the dynamics. In order
to identify the dynamical phase transitions from the previous section, it suffices to answer
the following question: What are the average properties of the typical (= most numerous)
backtracking attractor for a fixed ρinit when p → ∞?

Introduction to (B)DCM. Before we answer this question precisely for the conforming
non-conformist GCAs we give a brief overview to the (B)DCM, to make clear how it works -
and why this approximation is valid for the conforming non-conformist rules on random regular
graphs. In this introduction, we want to give a good understanding of the method. However,
we refer the reader to [15] for the original derivation.

The main ingredient to the (B)DCM is a probability distribution over all possible sequences
of configurations (Sn)p+c. In the simple case, the probability assigns a uniform value to all
(p/c) backtracking attractors x that occur in the configuration graph of the dynamics, and a
zero measure to any other sequence:

P (x)= 1
Z
1

[︂
F (xp+c) = xp+1

]︂p+c−1∏︂
t=1

1

[︂
F (xt) = xt+1

]︂
. (3.4)

Here, 1(·) is the indicator function on a Boolean statement where a true statement yields 1 and
0 otherwise. If c = 0 and therefore xp+1 is undefined, we drop the first factor where it appears.
The normalization constant Z of this distribution is then equivalent to the number of valid
backtracking attractors. Since this number Z is extensive in the system size n, we measure it in
terms of the free entropy density Φ = 1

n log(Z). However, computing Z and therefore the entropy
directly is intractable, due to the high-dimensional integral over all possible configurations. To
solve this issue, analogous to the classical cavity method for static analysis, we use the Bethe
Peierls approximation to compute its leading exponential factor using Belief Propagation (BP)
on its factor graph. This approach is exact for factor graphs that are trees and, in many cases,
leads to asymptotically exact results for sparse locally tree-like factor graphs. In the literature,
the cases where the BP provides asymptotically exact results on sparse random graphs are
called replica symmetric and [15] observed that it indeed plausibly provides asymptotically
exact results for the cases studied there.

Eventually, this approach leads to a lower dimensional fixed point equation which is amenable
to numerical solutions. In addition to the approximation of the free entropy density ΦBP ,
this approximation conveniently admits a means of computing its marginals and expectations
for observables1 of the system, e.g. the density of the attractor. By additionally introducing
re-weighting of the backtracking attractors in the probability distribution according to some
external potential we can also ‘fix’ some of their properties to a prescribed constraint, and
extract for example only backtracking attractors with a fixed initial density ρinit.

Equations for random regular graphs. For random d-regular graphs this strategy admits
a particularly simple analysis: Under the assumption that all neighbourhoods are locally the
same, solving the BP on the factor graph corresponding to eq. (3.5) is equivalent to solving
a fixed point equation for only one neighbourhood. Then, the message on the factor graph
χ→

x,y ∈ R4(p+c) from the center node x to its neighbour y is defined in terms of all possible values

1This is only possible when the observable factorizes over the nodes.

58

that its other d− 1 neighbours y can take. It is re-weighted by χ→ itself 2:

χ→
x,y = 1

Z→ e−λΞ̃(x)

⏞ ⏟⏟ ⏞
a(x)

observable/
constraint

∑︂
x,y

[d−1]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

[︂
f(xp+c; yp+c

[d]) = xp+1
]︂ p+c−1∏︂

t=1
1

[︂
f(xt; yt

[d]) = xt+1
]︂

⏞ ⏟⏟ ⏞
A(x,y

[d]
)

valid (p/c)-backtracking attractor

∏︂
z∈y

[d−1]

χ→
z,x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.5)

Here, the inner constraint assures that we only consider valid backtracking attractors. The Z→

is again the normalization constant, the interval is [k] = 1, ..., k and Ξ̃ is the factorized observable
of the global extensive variable of interest Ξ(x) = 1

n

∑︁n
i=1 Ξ̃(x). This localized observable Ξ̃

with the factor λ allows for the previously mentioned re-weighting and constraining. As an
example, take the initial density, for which we define the terms of the summand Ξ̃(x) = x1, so
that the intensive global variant is 1

nΞ(x) = 1
n

∑︁n
i=1 Ξ̃(x) = ρinit(x).

To obtain the BP approximation of the entropy density, it suffices to compute the following
at the fixed point of eq.(3.5):

ΦBP = log(Z fac) − d
2 log(Zvar) , (3.6)

Z fac = ∑︁
x,y[d]

A(x,y[d])
∏︁

y∈y[d]
χ→

x,y , (3.7)

Zvar = ∑︁
x,y a(x)χ→

y,xχ
→
x,y . (3.8)

Implementing and finding a solution to (3.5) can be intricate due to numerical instabilities. The
solver used for our analysis is available on github3.

Since the strength of the reweighting λ which we fix during the iteration of the fixed point,
acts only as the Lagrangian multiplier, it has no immediate correspondence to the value of the
constraint (e.g. ρinit). To find the concrete value, we use that at a fixed point χ→ it holds that

∂ΦBP (λ)
∂λ

= − 1
n

⟨︂
Ξ̃
⟩︂

BP
= −

∑︁
x,y

Ξ̃(x)e−λΞ(x)˜
χ→

y,xχ→
x,y∑︁

x,y
e−λΞ̃(x)χ→

y,xχ→
x,y

. (3.9)

We can measure the activity α or the density in the attractor ρattr by adjusting the function
Ξ̃ correctly. This allows us to obtain their marginals even when we did not reweight the
distribution, as this corresponds to the setting where the corresponding λ = 0.

Notice that the assumption of all the neighbourhoods being described by eq. (3.5) is
equivalent to the replica symmetric assumption which in turn on random regular graphs without
another source of disorder is equivalent to the annealed calculation of the free entropy. In
the present systems, the annealed calculation is non-trivial, see e.g. [31] and writing the BP
equations (3.5) is the most efficient way to obtain it we know of.

Application to conforming non-conformist GCAs. Notice that above we wrote the
equations for dynamical systems that are updated in parallel, are deterministic and run in
discrete time. The update function does not distinguish between particular neighbours of a
node and the connectivity graph of the neighbouring nodes is locally tree-like in the large size
limit. Finally, the size of the system’s attractors has to stay constant as the system’s size
increases. Since from our definitions and our empirical observations all these properties hold
for the conforming non-conformist rules on random regular graphs, the (B)DCM is perfectly
suitable for an analysis of the CNC rules.

2This equation is equivalent to (17) from [15], and the derivation and factor graph is described therein using
the same notation.

3github.com/SPOC-group/dynamical-phase-transitions-GCAs

59

github.com/SPOC-group/dynamical-phase-transitions-GCAs

Recall that we want to answer “What are the average properties of the typical backtracking
attractor for a fixed ρinit when p → ∞?”. One can take two approaches to this question, either
by answering it starting from the initial or final configuration of the backtracking attractor.

To answer “What are the properties later in the dynamics given that the starting point is
fixed?”, we use the DCM. This means setting c = 0 in the backtracking attractors, we are only
looking at paths. As we increase the trajectory length p we can observe how the density on the
last configuration ρp = ρ(xp) evolves.

To answer “How large is the basin of attraction of a specific type of attractor?”, we use the
BDCM. We can fix properties of the attractor, e.g. c = 2 and α = 0.5 to identify a specific
partially rattling attractor, and then increase p to measure the evolution of the size of the basin
of attraction in terms of its entropy density. As one increases the length of the incoming path p,
the analysis incorporates a growing fraction of the attractors’ basin. Comparing this entropy
between different types of attractors allows us to determine which is the most numerous and
typical behaviour that is observed in the large n limit.

We will use these two general principles to identify analytically the dynamical phase
transitions we empirically observed in Section 3.3.

Limitations and Alternative Methods. A significant limitation of the (B)DCM is that
solving the previously mentioned fixed point equations numerically requires a computational
budget which grows exponentially in d(p+ c) when considering a d-regular graph. While the
dependence on d can be alleviated via dynamical programming [147], it is prohibitive to analyse
very long paths p or large cycles c. This means that applying the method directly is only possible
for small dynamic motifs which yield interesting results only for rapidly relaxing properties at
the start or end of the dynamics. However, this is exactly what we observe for the conforming
non-conformist rules and which makes the analysis with the (B)DCM feasible.

It is worth noting that by making additional assumptions, such as the one-time approximation,
longer dynamics become amenable to the method. However, this is at the cost of further
uncontrolled approximations [5, 11, 33]. Alternative methods of analysis from statistical physics
give results for simpler dynamics; examples include but are not limited to the random functions
in RBNs [38, 91, 140] or unidirectional dynamics with absorbing states [4, 88]. Another
helpful feature is the relaxation of the topology, for example oriented graphs [111], graphs with
asymmetrically weighted edges [102] for straightforward use with the DCM or independently
re-sampled neighbourhoods at every iteration [110, 151] which are amenable to mean field
methods. However, to the best of our knowledge the (B)DCM as we use it comes closest
to the very difficult case of understanding cellular automata with its rigid and deterministic
architecture.

3.5 Dynamical Phase Transitions
for Conforming Non-Conformist GCAs

In the following, we detail how we apply the DCM and BDCM to the examples we investigated
empirically in Section 3.3, Fig. 3.5. Recall that for all GCAs seen previously, when ρinit is close
enough to either 0 or 1, the dynamics rapidly falls into one of the homogeneous attractors, while
the region in between exhibits more complex dynamics. This region differs for every rule type.
The goal is to analytically identify these phase transitions between the regions precisely. Some
of these results have previously been used to demonstrate the BDCM in [15].

Anti-conformist GCA: 001011. Recall that the anti-conformist GCA 001011 exhibits
both chaotic and ordered behaviour for different values of ρinit, but always converges to the
all-1 or all-0 attractor eventually. The dynamics of this GCA is fully deterministic, yet the
configurations of trajectories in the chaotic phase look random with respect to the density

60

50 75 100 125 150 175 200

graph size n

100

101

102

103

104

105
tr

an
si

en
t
p ρinit

< 0.2

0.2

0.22

> 0.22

0.200 0.210 0.220 0.230

density ρinit

0.0

0.2

0.4

0.6

0.8

1.0

P
[c

h
ao

ti
c

p
h

as
e]

103

104

105

106

n

0.0 0.1 0.2 0.3 0.4 0.5

density ρinit

0

10

20

30

re
la

x
at

io
n

ti
m

e

Figure 3.6: Transient growth, chaotic phase classification and relaxation time for
the anti-conformist GCA 001011. (Left) For ρinit < 0.5 we display the transient growth
for graphs of size n ∈ {50, 100, 150, 200}, generated as in Fig. 3.5. The resolution of ρinit is
limited by n = 50, a stepsize of 0.02. A transition between an exponential (straight line in
the log-linear plot) and a much slower transient growth between ρinit = 0.2 and 0.22 is clearly
visible. (Middle) Empirical phase transition for the onset of a chaotic phase, which in this case
is defined as the attractor taking more (chaotic) or less (homogeneous stable) than log(n) ∗ 100
time steps to reach an attractor. The resolution of ρinit is 0.001 and narrows the interval of the
dynamical phase transition down to [0.2165, 0.2185], the interval for n = 106 between which
no samples out of 1024 exhibit a behaviour that is not consistent with their phase. (Right)
The relaxation time describes the number of time steps required until either the chaotic regime
or an attractor is reached. We empirically conclude the system is in the chaotic regime if the
densities of 100 consecutive configurations remain in the interval (0.5 − 3√

n
, 0.5 + 3√

n
). For all

values of n the maximal length of the two largest ρinit we observe are ρinit = 0.21 and 0.22.

ρ (see e.g. Fig. 3.4), hence the name. The difference in behaviour between the chaotic and
ordered phase clearly shows in Fig. 3.6 (left), where the transient length grows exponentially
in the graph size n for ρinit ≥ 0.22. However, running larger system sizes than n = 200 until
convergence is prohibitively expansive, so the resolution of the transition we can obtain from
this method is limited.
Therefore, as an additional criterion for identifying the chaotic phase for anti-conformist GCA,
we check when the convergence time exceeds a threshold of 100 ∗ log2(n). At this point, the
simulation is stopped and trajectories that have not yet converged are classified as chaotic.
Even though this heuristic is robust to changes of the factor 100 to 50 or 1000, we confirm the
results with another method.

Inspecting the trajectories of the density ρ in Fig. 3.4, we observe that the density of
configurations in a chaotic phase is oscillating around ρ = 0.5; more precisely it seems to

DCM prediction
p intersection of ρp and ρp+1

2 0.2039
3 0.2142
4 0.2158
5 0.2165
6 0.2167

→ ∞ 0.2168 ± 0.0001
empiric 0.2175 ± 0.001

Figure 3.7: DCM prediction of dynamical phase transition for the anti-conformist
GCA 001011. (Left) The prediction of the DCM for the density ρp after p steps, for different
initial configurations ρinit. (Middle) Zoom into the region of the phase transition, with data for
p = 7 added. (Right) Table of the crossover points between the different lines. The curves in
the middle zoom were fitted with a linear regression and then the intersection was computed.
Extrapolating p → ∞ gives a transition at ρinit = 0.2168 ± 0.0001 (see Appendix Fig. 3.17).

61

0.6 0.7 0.8 0.9 1.0

density ρinit

0.0

0.2

0.4

0.6
en

tr
op

y

p = 1

3

0011(partially rattling vs. homogenous)

homogenous stable

partially rattling

phase change

0.5 0.6 0.7 0.8 0.9 1.0

density ρinit

0.0

0.1

0.2

0.3

0.4

0.5

ac
ti

v
it

y
α
p

p = 1

5

BDCM

coexistence

first αp = 0

BDCM prediction 0011
for first α(ρ

∗,p
init) = 0

p ρ
∗,p
init s∗

p/H(ρ
∗,p
init)

1 0.8885 0.873
2 0.8459 0.933
3 0.8216 0.958
4 0.8080 0.971
5 0.7996 0.979

→ ∞ 0.7875 ± 0.005
empiric 0.785 ± 0.005
[73] > 0.7865

Figure 3.8: BDCM prediction for the absolute majority GCA 0011. (Left) Entropy of
the basin of attraction for the homogeneous and partially rattling attractors, for increasing
path lengths p = 1, 2, 3. (Middle) The activity in the limit cycle for fixed points for (p/c = 2)
backtracking attractors. The dashed line shows the range of ρinit for which our numerics did
not find any fixed points. (Right) The table shows the values of the smallest ρ∗,p

init > 0.5 for
which α(ρ∗,p

init) = 0.0 together with the normalized entropy at the corresponding given ρinit. It
shows the extrapolation p → ∞ and compares it with the numerical results and related work
(see Appendix 3.9).

remain in the interval of densities (0.5 − c√
n
, 0.5 + c√

n
) where n is the system size and c is a

constant (see Appendix 3.9 for details). We use this observation as a heuristic criterion for
assessing whether a trajectory has entered the chaotic phase: Once a trajectory’s densities
stay in (0.5 − 3√

n
, 0.5 + 3√

n
) for a sufficient amount of time (100 time-steps), we conclude the

trajectory is in the chaotic phase. The time it takes to either reach this chaotic phase or an
attractor is shown in Fig. 3.6 (right), it peaks around the approximate location of the dynamical
phase transition.

With these three numerical experiments from Fig. 3.6, we have a good agreement to identify
a phase transition to be between ρinit = 0.217 and 0.218. We proceed by obtaining it analytically
using the DCM.

Recall that the DCM is limited to small lengths p of the trajectory for which we can solve
the fixed point iterations efficiently. The question is then, how can we distinguish whether the
dynamics converges fast or slow when we can look ahead only a finite number of steps p?

To answer this, observe that the relaxation time is extremely fast for any ρinit, even for
the ones that go on to stay in the chaotic region for an exponentially long time. Further, we
observed that on average, during the chaotic phase, the density is 0.5. The appropriate question
is then: After p steps of the DCM, what is the density of the last configuration ρp in the large
n limit? At the infliction point for growing p, we expect to find the dynamical phase transition.
In Fig. 3.7, we show an overview and zoom-in for the relationship between ρinit and ρp, for p
up to 7. We compare the extrapolated value for p → ∞, assuming exponential convergence
(see Appendix 3.9), and our empirical extrapolation. Indeed, the correspondence theory and
empirics is very good, at a theoretically predicted transition around ρinit ∼ 0.2168.

Since both the chaotic and ordered dynamics for the anti-conformist GCA 001011 have
attractors of the same type, the backtracking approach of the BDCM is not very insightful for
this specific transition. However, it is useful to inspect the other CNC rules in the following.

Absolute Majority GCA: 0011. For the absolute majority GCA 0011, the convergence is
logarithmic independently of ρinit and the system’s phases differ only in the type of attractor
they converge to.

In Fig. 3.8 we show the entropy of backtracking attractors with a path length p = 1, 2, 3
obtained via the BDCM. Here, the entropy represents the size of its basin of attraction when
stepping back p steps from the attractor, for a specific ρinit. Each differently styled line represents
a single type of attractor. Their entropy was obtained by solving the BDCM fixed point iteration

62

0.6 0.7 0.8 0.9 1.0

density ρinit

0.0

0.2

0.4

0.6
en

tr
op

y

p = 1
3

00+11(mixed stable vs. homogenous)

mixed stable

homogenous stable

phase change

0.6 0.7 0.8 0.9

density ρinit

0.7

0.8

0.9

1.0

d
en

si
ty
ρ

a
tt

r

p = 1

4

BDCM

first ρpattr = 1

BDCM prediction 00+11
for first ρattr(ρ

∗,p
init) = 1

p ρ
∗,p
init s∗

p/H(ρ
∗,p
init)

1 0.828 0.909
2 0.768 0.965
3 0.745 0.983
4 0.737 0.990
5 0.733 0.994

→ ∞ 0.73 ± 0.005
empiric [15] 0.731 ± 0.002

Figure 3.9: BDCM prediction for the stubborn independent rule 00+11. (Left) Entropy
of the basin of attraction for the all-1 and mixed stable attractors respectively, for increasing
steps into the basin of attraction p = 1, 2, 3. The dynamical phase transition is marked in red.
(Middle) The density of 1’s in the attractor, ρattr, as a function of ρinit for attractors with c = 1.
(Right) The transitions is the first ρinit for which the ρattr = 1. These values are recorded in
the table together with the entropy of the basin of attraction at that point. The extrapolation
agrees well with the empirical estimate of the transition from the maximal slowing down (see
Appendix 3.9).

under the constraint matching the respective attractor properties, i.e. c = 1, 2. In addition,
the value of ρinit was constrained, giving the final result. In the large n limit only the types of
attractors with the maximum entropy are expressed. Therefore, the correct way to interpret the
plots is to check which attractor type has the maximum entropy for every ρinit — this phase
will be the one which is typically observed in large systems.

At p = 0, we would only count the attractors, without their basin, essentially using the
method from [69]. However, only as we increase p and incorporate the basin of attraction, we
observe that the overall picture from the empirics Fig. 3.5 is reproduced qualitatively by the
BDCM: For large ρinit, it shows the all-one attractor. Decreasing ρinit around 0.5, one finds the
partially rattling attractor.

Since a (p/c = 1) backtracking attractor is also a (p/c = 2) backtracking attractor, the two
entropy curves naturally merge when the (p/c = 2) backtracking attractors reduce to attractors
that are of length c = 1. This merge between the two curves is the dynamical phase transition
at a given fixed p, see Fig. 3.8 (left). Inspecting the fixed point for c = 2, we indeed find for
large enough ρinit that the activity α, the fraction of rattling nodes in the limit cycle, becomes
essentially zero (Fig. 3.8 (middle)). This indicates that the number of such rattling nodes
no longer scales in O(n) and that the fixed point only considers limit cycles of length c = 1.
Recording the switch from α = 0 to α > 0 gives the dynamical phase transition, as shown in
the Table on the right in Fig.3.8. Even though we did not compute values larger than p = 5, we
extrapolate the BDCM result to p → ∞ to make our theoretical prediction. This agrees well
with the empirical prediction (Appendix 3.9).

Stubborn Independent GCA: 00+11. We can do a similar type of analysis for the stubborn
independent GCA 00 + 11. This is the GCA where the node in the weak agreement region is
stubborn, i.e. it sticks with its own opinion. In this analysis, we distinguish between two types
of attractors that go either to the homogeneous all-1 or mixed stable state, which both have
a limit cycle length of c = 1. Recall that the mixed stable state is defined to be an attractor
where the density in the attractor ρattr is not 0 or 1 (see Table 3.1). In Fig. 3.9 (left) we show
the entropy for small p in terms of ρinit. To identify the dynamical phase transition we again
track the spot where the attractor type with the maximum entropy switches over. Here, this is
a merge of the two curves again. While we can restrict the fixed point iteration to variables
that always end up in the all-1 attractor, for mixed stable attractors there is so far no technical
means of constraining it to a non-zero ρattr. This is why we track the ρattr as a function of ρinit
in Fig. 3.9 (middle) and record when this property becomes close enough to 1.0, giving us the

63

0.5 0.6 0.7 0.8 0.9 1.0

density ρinit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
en

tr
op

y

p
0 1 2 3

0
3

all-rattling

partially-rattling

phase change

0.645 0.650 0.655 0.660 0.665 0.670

density ρinit

102tr
an

si
en

t
p

0.645 0.650 0.655 0.660 0.665 0.670

density ρinit

0.0

0.2

0.4

0.6

0.8

1.0

P
[<

O
(1

)
n

on
-r

at
tl

er
s]

n

10000

25000

50000

100000

250000

500000

1000000

Figure 3.10: Dynamical phase transition for the volatile independent GCA 00 − 11.
Comparison of the analytical and empirical prediction of a dynamical phase transition for the
volatile independent GCA 00 − 11. We examine the transition between the all and partially
rattling 2-cycles. (Left) Analytical prediction of the entropy for each ρinit for the two different
types of attractors basin of attraction for increasing transient lengths p. The intersection of
the two entropy marks the phase transition for a given p and is marked in red. Because the
computed entropy is not close enough to the maximal entropy, as shown by the grey line, the
approximation of the transition is not very conclusive and extrapolating the four data points
would result in very high uncertainty. (Middle) Zoom in on the average transient length around
the phase transition from Fig. 3.5. (Right) Probability of obtaining a smaller than o(n) fraction
of rattlers, i.e. the fraction of nodes in the attractor. To determine a reasonable threshold
for having a constant o(n) fraction of rattlers, when n is finite, we analysed the scaling of
the rattler fraction as a function of n, which resulted in an attractor having no more than
0.07% of non-rattlers to be classified as a partially-rattling attractor (Appendix 3.9). While the
thresholds agree roughly, the accuracy is worse than for the GCAs discussed previously.

value of change. The table on the right of Fig. 3.9 records these values. The extrapolation to
p → ∞ matches well with the empirical result.

Volatile Independent GCA: 00−11. The volatile independent GCA 00 − 11 is slightly
more complex, as it has more phases than the GCAs discussed previously, and four dynamical
phase transitions (Fig. 3.5). Since the transition between partially rattling and homogeneous
phase is similar to the GCA 0011, we discuss only the transition between all-rattling and
partially-rattling, i.e. the change between attractors of length c = 2 where either all nodes
change (activity α = 1.0) or some of them are fixed (α < 1).

In Fig. 3.10 the entropy of the two phases is shown on the left. This time, the two fixed
points intersect, and do not merge. However, the fraction of the basin of attraction covered by
the p = 4 steps that are taken back, is smaller than in the other examples. This can be viewed
as a reason for which this dynamical transition is correct qualitatively, but the approximation
is not precise. The fact that for this GCA, more steps back are necessary, reflects the common
observation that close to phase transitions the convergence time increases, which makes the use
of the BDCM more challenging computationally in its vicinity by default.

3.6 Conclusion and Open Questions

In this work, we use tools from statistical physics – the dynamical cavity method and its
backtracking version – to demonstrate that they are powerful for deriving analytical results on
the global dynamics of discrete dynamical systems in the large system size limit.

Concretely, we study a class of graph cellular automata called the conforming non-conformist
GCAs that can be interpreted as various models of opinion formation dynamics. We argue that
such systems exhibit a rich set of dynamical phases defined by their different transient and
attractor properties, and we show the existence of sharp transitions between such phases in
terms of the initial configuration density.

64

For two specific examples with small degrees, we showed how the (B)DCM methods are
applied and predict the phase transitions. We show that our analytic predictions agree well
with numerical estimates for reasonably large systems.

Such results enforce the narrative that for discrete dynamical systems, different choices of
initial configurations can lead to qualitatively different regimes of the system’s behaviour.

Relationship between CAs and GCAs. In its formulation, the graph cellular automata
are extremely close to classical cellular automata – they only differ in how their nodes are
connected. Whereas for CAs, the connectivity network is given by a regular grid, the GCAs’
connections are defined by a random regular graph. As such, deriving analytical results about
their global dynamics is challenging and our work shows a variety of new results about such
systems.

It is not yet clear in how far our results for the random regular graphs (GCAs) transfer
to the regular lattice (CAs). Even though classical CAs are not amenable to the analysis via
(B)DCM, a numerical investigation is still possible. Previous work has shown that similar
types of attractors and phases do occur on the lattice [7], but our own preliminary empirical
investigations did not show an immediate and unambiguous connection. We leave a thorough
investigation of these empirics for future work.

Clearly, an analytic method capable of directly handling deterministic CAs directly rather
than extrapolating behaviour from the regular GCAs or probabilistic cellular automata [7, 122]
is a challenging goal.

Limitations of the (B)DCM. A major drawback of the DCM and BDCM is the exponential
computational barrier which depends on the length of the analysed motif p + c. Even when
the system typically relaxes fast, as previously noted, this limitation may lead to less accurate
estimates of the transition [15] as around phase transitions the transient length may increase
due to critical slowing down. Therefore, it seems worth investigating if and how approximations
to the DCM [5, 11, 33, 68, 147, 167] would give new insights into longer time scales, and if they
remain accurate around phase transitions or suffer from similar limitations. Moreover, it is an
open task to adapt such approximations to the backtracking version of the DCM.

Large degrees. For very large degrees d, which scale in the size of the graph n, we empirically
extrapolate our results. We deduce from the numerics that a scaling of the weak agreement
threshold θ approximately as

√
d maintains the dynamical phase transitions we showed for the

small degrees. For the absolute majority and stubborn/volatile independent GCAs we conjecture
based on our numerical experiments that only the behaviour that we showed previously will
occur. However, preliminary results for the anti-conformist GCAs showed that new types of
behaviour emerge when we increase d, hinting at further dynamical phase transitions that
require a higher resolution in d to manifest. We leave a thorough investigation of this rule space
and its peculiarities for future work.

Short attractors. While for the absolute majority and volatile/stubborn independent GCAs
only short attractors of length 1 and 2 can occur [48], we showed that empirically the same
holds true for the anti-conformist GCAs on sparse random regular graphs of large size. Based
on this evidence, we conjecture that in the large n limit such GCAs typically only has short
attractors for finite d. This statement remains to be proven.

Phase transitions and complexity. There has been a plethora of works on dynamics
of discrete systems that focus on their complex behaviour – this is typically associated with
intriguing visualizations of the systems’ space-time diagrams or with the capacity to compute
challenging tasks [18, 72, 158]. Many attempts at formalizing the notion of complexity have

65

been given with the general belief that the region of complex behaviour is located at a phase
transition between “ordered” and “chaotic” systems [38, 84].

In our work, we do not explore the phase transition in the space of systems. Rather,
for a fixed GCA, we describe the phase transition in the space of its initial configurations.
This transition becomes particularly interesting for the anti-conformist GCAs that, near the
transition, abruptly switch from logarithmic convergence to attractors (associated with simple
behaviour) to an exponential one (interpreted as chaotic behaviour) [67]. As such, it becomes
very interesting to ask: Is the behaviour of the system near the phase transition qualitatively
different? Does it show some signs of “complexity”? From Fig. 3.6, middle, it is apparent that
as we increase the system’s size, near the phase-transition the system converges to its typical
behaviour much more slowly than away from the transition. Thus, in our case, the complexity
arises from deciding what type of behaviour the system will settle to near the transition.
However, assessing the system’s complexity near the transition would require carefully choosing
a formal metric of complexity. Therefore, we leave such investigations for possible future work.

Opinion Dynamics. As a side product, we investigated our version of a popular framework
from opinion dynamics [52] on a sparse graph. It encompasses a local update rule that seems
anecdotally ubiquitous in popular culture: The conforming anti-conformist. This is an agent
who only acts in favour of the minority when this minority is not too small, i.e. when the race
between the majority and minority is tight. Our analysis showed that such behaviour allows for
two opinions to co-exist for a prolonged period of time in the system and thereby maintains a
diversity of opinions.

66

3.7 Larger degree behaviour

We studied the dynamics of all conforming non-conformist rules for connectivity d = 3 and
d = 4 and observed the following general trend shown in Fig. 3.11.

01 GCAs

0 1ρ0

0−1 GCAs

0 1ρ0

0+1 GCAs

0 1ρ0

Figure 3.11: Phase diagram scheme for GCAs with rules of type 01, 0−1 and 0+1. While
for all GCAs the homogeneous stable all-white and all-black phases are at the end of the ρinit
spectrum, the intermediate behaviour is qualitatively different. We argue that for each rule
type, when increasing ρinit from 0 to 1, the phases occurring always obey the order illustrated
in the diagram, though, for degenerate cases, some of the phases might be missing (e.g., the
constant 0 GCA only has the homogeneous all-0 phase).

Only the volatile independent rule types 0–1 exhibit both the all-rattling and partially-
rattling phases; whereas the stubborn independent rule types only exhibit stable phases. One
interesting question is: “How does the phase transition behaviour scale for larger values of d?”
Fig. 3.13 illustrates that if the threshold θ remains constant as we increase the connectivity d,
the interesting region of ρinit shrinks and almost all initial densities exhibit fast convergence to
either the all-0 or all-1 attractor. Eventually, as the degree grows all these rules behave as the
majority rule.

Let k ∈ N and θ ∈ N. We can parameterize the conforming non-conformist rules with
connectivity d odd in the following way:

stubborn independent: 0k +2θ 1k

volatile independent: 0k −2θ 1k

anti-conformist: 0k1θ0θ1k

with d = 2k + 2θ − 1. We note that the parameter θ indeed corresponds to the threshold
parameter from the definition of CNC rules in Section 3.3. A few examples of the dynamical
behaviour for conforming non-conformist rules with larger d and θ are shown in Fig. 3.12. For
the stubborn/volatile independent GCAs we observe that if θ scales approximately as

√
d, the

phase transitions are preserved (Fig. 3.12, left). Once θ deviates from
√
d the transitions may

collapse and certain phases are no longer present (Fig. 3.13). The situation, however, looks
more complicated for the anti-conformist GCAs. In Fig. 3.12, right, we picked very specific
values of k and θ, for which the general phase transition trend with the interesting region of
alternate behaviour around ρinit = 0.5 is present. We highlight that different values of k and θ
yielded new types of behaviour for the anti-conformist GCAs that need further investigation
and are left for future work.

67

100

101

d
=

15
[k

=
6,
θ

=
2]

tr
an

si
en

t
p

0k +2θ 1k
stubborn independent

100

101

0k −2θ 1k
volatile independent

100

101

d
=

33
[k

=
12
,θ

=
5]

tr
an

si
en

t
p

100

2× 100

3× 100

4× 100

6× 100

10−1

100

101

d
=

63
[k

=
24
,θ

=
8]

tr
an

si
en

t
p

10−1

100 n
102

103

104

105

106

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

100

101

102

103

d
=

27
[k

=
11
,θ

=
3]

tr
an

si
en

t
p

0k1θ0θ1k
anti-conformist

n
100

200

300

400

100

101

102
d

=
47

[k
=

20
,θ

=
4]

tr
an

si
en

t
p

n
200

300

400

500

100

101

102

d
=

67
[k

=
29
,θ

=
5]

tr
an

si
en

t
p

n
400

500

600

700

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

Figure 3.12: Weak agreement region with scaling (very roughly) in θ ∼
√
d. Increasing

the degree d for the stubborn/volatile independent GCAs and the anti-conformist GCA, while
scaling the weak agreement region (very roughly) as

√
d. Samples were obtained as described

in Fig. 3.5.

68

101

102

k
=

2
tr

an
si

en
t
p

0k1k

absolute majority

100

101

102

0k + 1k
stubborn independent

100

101

102

0k − 1k
volatile independent

101

k
=

3
tr

an
si

en
t
p

100

101

100

101

102

100

101

k
=

5
tr

an
si

en
t
p

100

101

100

101

100

101

k
=

10
tr

an
si

en
t
p

100

101

100

101

100

101

k
=

25
tr

an
si

en
t
p

100

101

100

101

n
102

103

104

105

106

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

Figure 3.13: Weak agreement region with θ ∈ {0, 1}. Increasing the degree d for the
absolute majority and stubborn/volatile independent GCAs, while keeping the weak agreement
region constant. Eventually, all GCAs behave like the absolute majority GCA. Samples were
obtained as described in Fig. 3.5.

69

3.8 Supporting Empirics for Phase Characterization

0.0 0.2 0.4 0.6 0.8 1.0

density ρinit

0.992

0.994

0.996

0.998

1.000
P

[c
≤

2]

1 2 3 4 5 6 7 8 9 ≥ 10

limit cycle c

0

10−5

10−4

10−3

10−2

10−1

100

P
[c

]

n
50

100

150

200

res.

Figure 3.14: Length of limit cycles for the anti-conformist GCA (code 001011). We
show the length of the limit cycles for the data collected for Fig. 3.5, i.e. 4-regular graphs and
different initial densities. (Left) Probability that a sample has a limit cycles length c ≤ 2. Since
we only sample few such long limit cycles, we combine the data for the different initializations
ρinit on the (right). The dashed grey line shows the minimal resolution we are limited to due to
our sample size, which was 1024 for each of the 100 different initial densities.

In Fig. 3.14 we investigate the lengths c of the limit cycles for the anti-conformist GCA
(code 001011). There, we almost always sample short attractors. As n grows, the number of
large limit cycles drops rapidly. This leads us to the conjecture, that in the large n limit, for
the anti-conformist GCAs, any attractors with sizes c > 2 will become vanishingly unlikely.

70

3.9 Supporting Material for Dynamical Phase Transition Pre-
dictions using the (B)DCM and Empirical Methods

In Fig. 3.15 we show yet another property of the chaotic phase of anti-conformist GCAs. The
graph suggests the evolution of distances of two close-by initial configurations follows a (pseudo)
random walk.

In Fig. 3.16 we demonstrate that the value of the densities observed during the chaotic
phase to an attractor, fall into the interval between the dynamical transition lines.

In Fig. 3.17 we show how we extrapolated the p = ∞ behaviour from the first 7 time steps
using the DCM for the anti-conformist GCA 001011.

We do the same for the absolute majority GCA 0011, in addition to precise numerics in
Fig. 3.17.

Similarly, the BDCM results for the stubborn independent GCA 00+11 are extrapolated in
Fig. 3.19.

In Fig. 3.20 we base our selection of the threshold to distinguish the all and partially rattling
phase on numerical evidence that shows how the scaling of the activity α behaves differently for
each ρinit.

0.48 0.49 0.50 0.51 0.52

distance d

10−5

10−4

10−3

10−2

P
(d

)

Figure 3.15: Illustration of chaotic phase for anti-conformist GCA 001011: evolution
of distances of two close-by trajectories. For GCA 001011 we randomly generated an
initial configuration with length n = 10000, and density ρinit = 0.5 and a close-by configuration
with ϵ · n different bits; ϵ = 0.01. While both configurations’ trajectories remain in the chaotic
regime, we measure their average Hamming distance and plot the probabilities for 100 such
experiments averaged.

71

Figure 3.16: Histogram of the density ρ for transients with a chaotic behaviour (after
relaxation and before convergence to an attractor) for the anti-conformist GCA
001011. We sample 1024 graphs of size n = 100 with the dynamics of the rule 001011 started
at ρinit = 0.2. The first 100 time steps after the start of the dynamics and last 100 time steps
before reaching the attractor are removed for every sampled trajectory. Since the convergence
is fast in the phase where an attractor is reached rapidly (see Fig.3.5), such a cut-off effectively
removes all transients that converge rapidly (less than 200 time steps long). The histogram
shows the density of the remaining trajectory which exhibits a chaotic behaviour. The red lines
mark the phase transition measured empirically for rule 001011 between the phase of rapid
convergence to the homogeneous state (left and right side) and the chaotic phase (between the
red lines). Note that during this time almost all samples lie within the regime of the chaotic
phase.

Figure 3.17: Anti-conformist GCA 001011 – Extrapolation. Extrapolation of the crossover
points from Fig. 3.7 to p → ∞. The plot shows the distance to the critical ρc

init, the possible
location of phase transition points. Under the assumption of an exponentially fast convergence
in p, the best fit seems to lie at roughly ρc

init = 0.2168 ± 0.0001.

72

1 2 3 4 5

p

10−2

10−1

|ρ
∗,
p

in
it
−
ρ
∗,
∞

in
it
| ρ∗,∞init

0.795

0.7925

0.79

0.7875

0.785

0.7825

0.78

0 1 2 3 4

1/n ×10−5

0.7723

0.7745

0.7769

0.7804
0.7791

0.7813

ρ
∞ in

it

0.7869 + 0.9095(1/n)

Figure 3.18: Absolute majority rule 0011 – Extrapolation. Extrapolation of the theoretical
BDCM and empirical experiments to n → ∞ and p → ∞ respectively. (Left) Scaling of the
distance to different values of extrapolated ρ∗,∞

init for data for p = 1, ..., 5 for the BDCM. Assuming
exponentially fast convergence in p, a ρ∗,∞

init ∼ 0.7875 ± 0.005 is reasonable. (Right) The location
ρinit of the slowest average convergence for experiments over 4, 096 samples of random regular
graphs and initial configurations for a given graph size n are recorded, and then extrapolated
to n → ∞. With this we estimate that in the large system limit, the transition happens at
∼ 0.785 ± 0.005.

1 2 3 4 5

p

10−3

10−2

10−1

|ρ
∗,
p

in
it
−
ρ
∗,
∞

in
it
| ρ∗,∞init

0.73

0.731

0.732

0.733

0.734

0.735

Figure 3.19: Stubborn independent GCA 00+11 – Extrapolation. As in Fig.3.18 we
show different extrapolations of the BDCM’s predictions for dynamical phase transitions for
fixed p and extrapolate them to p → ∞, concluding that convergence within ∼ 0.73 ± 0.005.
The extrapolation for the empirics is taken from [15].

104 105 106

n

10−4

10−3

10−2

10−1

st
ab

le
n

o
d

e
fr

ac
ti

on
(1
−
α

)

0.60

0.62

0.64

0.66

d
en

si
ty
ρ

in
it

Figure 3.20: Scaling of the non-rattling nodes for different ρinit. For some ρinit the
non-rattling nodes scales logarithmic in o(n), for others they are a constant fraction in Θ(n).
The red value marks the intermediate threshold we selected to classify the all-rattling and
partially rattling phases in Fig. 3.10 (right), which had 0.7% of stable nodes.

73

4. Simulation Limitations of Affine
Cellular Automata
4.1 Introduction

Cellular Automata (CAs) are a famous model of computation which demonstrates that very
simple local rules can produce complex behaviour. In general, they have a great potential
to solve challenging tasks efficiently due to their massively parallel nature. However, it is a
long-standing challenge to formally assess the computational capacity of a given CA.

The usual formal method of demonstrating a CA’s computational power is to prove its
Turing completeness. Typically, this is done by taking a classical universal model of computation
(Turing machine, tag system, etc.) and embedding its computations into the space-time diagrams
of the given CA. These embeddings serve as impressive demonstrations that cellular automata
are indeed complex systems. Moreover, the embeddings serve as powerful tools for constructing
very compact computationally universal systems. However, there are several drawbacks to this
approach.

1. Cellular automata are highly parallel systems, thus, it is ineffective to simulate a sequential
Turing machine in its space-time diagrams to perform computations [118].

2. Given a CA, showing that it is Turing complete is very laborious. Most proofs of this sort
rely on noticing localized structures in the CAs’ space-time diagrams whose interactions
are typically encoded as basic logic gates [27, 130].

3. Despite several attempts [36, 39, 143], there is no single generally accepted formal definition
of simulation so far [118]. Thus, it is extremely difficult to prove convincing negative
results.

A different approach to formally assessing a CA’s computational capacity is through the
notion of CA relative simulation. Informally, we say that CA A is simulated by B if each
space-time diagram of A can be, after suitable transformations, reproduced by B. We argue
that comparing two cellular automata is much more natural than comparing a CA with a Turing
machine, since in the latter case, the architectures of the systems differ substantially. Past
works have explored various notions of CA simulations, typically focusing on positive results:
for a fixed family of CAs and a fixed CA simulation definition, authors construct intrinsically
universal CAs; i.e., cellular automata that are able to simulate any other CA within the fixed
family [1, 39, 40, 41, 49, 116, 117].

In contrast, the complementary work focuses on the negative results. For various notions
of CA simulations, the goal is to show that particular types of automata are limited in terms
of what they can simulate. Such results are scarce, yet they bring a valuable insight into the
structure of the CA space imposed by the simulation relation. For certain CA simulation
definitions, negative results have been shown about various classes of CAs such as nilpotent
CAs or particular additive automata [35, 97, 98].

Generally, each CA relative simulation definition considers a certain class of CA transforma-
tions T that map each automaton B into a class of related automata T(B). Then, we say that
A can be simulated by B if A ∈ T(B). We propose an informal classification of the previously
studied transformations into:

• algebraic: transformations of the CA’s local rule; e.g.: products, sub-automata, quotiens,
iterations

74

• geometric: transformations of the CA’s grid structure; e.g.: tiling of the grid space and
grouping of multiple cells, shifts, reflections

In this work, we propose a definition of CA simulation that is, to the best of our knowledge,
the most general algebraic one so far. We define the CA simulation and study its properties in
Section 4.2. The importance of this section lies in formalizing all the CA notions in abstract
algebraic language. This will allow us to see connections to well-established algebraic fields that
can provide powerful tools for analysing the CA simulation capacities.

In Section 4.3, we introduce the class of affine CAs – automata whose local rules are affine
mappings of vector spaces. This general class contains the much studied additive CAs [54, 70, 96].
Therein, we present Theorem 36 – the main result of this paper, paraphrased below:
Let B be a cellular automaton affine over a finite field Fp. If B satisfies a certain mild condition

(“the outer components of its local rule are bijective”), then all CAs simulated by B are also
affine over Fp (and satisfy the same condition).
Thus, we show that affine CAs have very limited computational capacity. We note that the mild
condition does not impose any important limitations as it is satisfied by almost all previously
studied, non-trivial cases of affine CAs. We also note that our main result already implies the
negative results about additive CAs proved previously in the literature [35, 97]. Even when
applied to some of the best known additive automata, our result gives considerably more than
was known before. To give one concrete example, it yields that ECA 60 [85] cannot simulate
any other elementary cellular automaton (up to isomorphism); this is discussed in Example 54.

Section 4.4 contains elementary proofs of the results leading up to Theorem 36. In Section
4.5, we point towards a connection to deeper results from universal algebra. We believe that
further study of connections between general algebra and CAs could be fruitful and provide
insightful results about the computational limitations of various cellular automata classes.

4.2 Defining Simulation of Cellular Automata

Definition 15 (Cellular automaton). Let S be a finite set, r ∈ N, and f : S2r+1 → S a function.
Let SZ denote the space of all bi-infinite sequences c = · · · c−1c0c1 · · · , ci ∈ S for each i ∈ Z. A
one-dimensional cellular automaton (CA) with set of states S, radius r, and local rule f is a
dynamical system A = (SZ, F) where F : SZ → SZ is defined for any c ∈ SZ and any position
i ∈ Z as:

F (c)i = f(ci−r, . . . , ci−1, ci, ci+1, . . . , ci+r). (4.1)

We call SZ the configuration space of A and F its global rule. We also call (SZ, F) the global
algebra. Each 1D CA is determined by its local algebra A = (S, f). Sometimes, we also write
A = (S, f)r to highlight the CA’s radius. A space-time diagram of A with initial configuration
c ∈ SZ and t time-steps is a matrix whose rows are exactly c, F (c), . . . , F t(c). Visualizations
of CA space-time diagrams give valuable insights into the CA’s dynamics. When depicting a
space-time diagram, we only show a finite part of each row.

In this paper, we focus on 1D cellular automata. Thus, whenever we talk about a CA, we
implicitly mean a 1-dimensional one. The definitions as well as most of the results of this paper
can be generalised to higher dimensions quite straightforwardly, but the technical details would
be tedious. Before we proceed with the definitions of CA simulation, we briefly review some
simple algebraic concepts.

75

Let S be a set, k ∈ N, and f : Sk → S a function. We call the tuple A = (S, f) an algebra of
type k. Let B = (T, g) be an algebra also of type k. We say that:

• A is isomorphic to B if there exists a bijection φ : S → T such that for each s1, . . . , sk ∈
S:

φ
(︁
f(s1, . . . , sk)

)︁
= g

(︁
φ(s1), . . . , φ(sk)

)︁
.

We write A ∼= B.

• A is a subalgebra of B if S ⊆ T and g
⃓⃓
Sk = f .

• Let ∼ ⊆ T × T be an equivalence relation. We call ∼ a congruence on B if:

g(t1, . . . , tk) ∼ g(t′1, . . . , t′k) whenever t1 ∼ t′1, . . . , tk ∼ t′k for any ti, t′i ∈ T, 1 ≤ i ≤ k.

We denote by [t]∼ = {t′ ∈ T | t′ ∼ t} the equivalence class of t ∈ T . There is a
well-defined algebra B

/︂
∼ = (U, h) where U = {[t]∼ | t ∈ T} and h : Uk → U is defined

as h([t1]∼, . . . , [tk]∼) := [g(t1, . . . , tk)]∼. We say that A is a quotient algebra of B if
A = B

/︂
∼ for some congruence ∼ on B.

• Let B1 = (T1, g1), . . . , Bn = (Tn, gn) all be algebras of type k. We define their product
B1 × · · · ×Bn as the algebra (T1 × · · · × Tn, h) where h(u1, . . . ,uk)i = gi(ui

1, . . . , u
i
k) for

each 1 ≤ i ≤ k, ui ∈ T1 × · · · × Tn, ui = u1
i · · ·un

i .

4.2.1 CA Canonical Relations

We start by defining canonical relations between CAs. We first do this in a purely algebraic
manner and subsequently motivate the definitions by relating them to the CAs’ global dynamics.

Definition 16 (CA canonical relations). Let A = (SZ, F) and B = (TZ, G) be CAs with local
algebras A = (S, f)r and B = (T, g)r respectively. We say that:

• A is automaton-isomorphic to B if A is isomorphic to B.

• A is a sub-automaton of B if A is a subalgebra of B.

• A is a quotient automaton of B if A is a quotient algebra of B.

• Let A1, . . . ,Ak be CAs with local algebras A1 = (S1, f1)r, . . . ,Ak = (Sk, fk)r respectively.
We define their product A1 ×· · ·×Ak to be the CA given by the local algebra A1 ×· · ·×Ak.

It is natural to consider automata up to isomorphism. This gives rise to the natural algebraic
operators we define below for a class K consisting of local algebras of some family of cellular
automata with radius r ∈ N.

S(K) = {A | ∃B ∈ K and C subalgebra of B such that A ∼= C}
H(K) = {A | ∃B ∈ K and C quotient algebra of B such that A ∼= C}

Pfin(K) = {A | ∃B1, . . . ,Bk ∈ K such that A ∼= B1 × · · · × Bk}.

The operators S,H, and Pfin transform a single local algebra A into classes of algebras S(A),
H(A), and Pfin(A). Subsequently, we will compose such operators and therefore, we generally
define them on a class of local algebras K rather than on a single local algebra A.

The CA canonical relations of Definition 16 relate the local algebras of cellular automata.
As such, they do not explicitly describe how this relationship translates to the CAs’ global
dynamics. The crucial observation is the following: Suppose that A is a CA isomorphic to B,

76

is a sub-automaton of B or is a quotient automaton of B. Then, for any space-time diagram
c of A, there exists a space-time diagram d of B which can be “translated” to c via a very
simple mapping. Thus, B can effectively reproduce any dynamics of A. Before we formalize
this observation, we introduce some further terminology.

Let φ : S → T be a mapping between finite sets. We define its canonical extension
φ : SZ → TZ simply as φ(c)i = φ(ci) for each c ∈ SZ and each i ∈ Z.

Observation 17. Let A = (SZ, F) and B = (TZ, G) be CAs with local algebras A = (S, f)r and
B = (T, g)r respectively. Then, it holds that:

1. A ∼= B if and only if there exists a bijection φ : S → T such that φ ◦ F = G ◦ φ.

2. A ∈ S(B) if and only if there exists an injective mapping ι : S → T such that ι ◦F = G ◦ ι.

3. A ∈ H(B) if and only if there exists a surjective mapping π : T → S such that F ◦π = π◦G.

Below, we show an example illustrating the notion of a quotient automaton.

Example 18. Let B = (TZ, G) be the CA with local algebra B = ({0, 1, 2, 3}, g)1 defined
as g(x, y, z) = (x + z) mod 4. We consider ∼ ⊆ Z4 × Z4 defined as x1 ∼ x2 if and only if
x1, x2 have the same parity. It is clear that whenever x1 ∼ x2, y1 ∼ y2, and z1 ∼ z2 for any
x1, x2, y1, y2, z1, z2 ∈ {0, 1, 2, 3}, then g(x1, y1, z1) ∼ g(x2, y2, z2). Thus, ∼ is a congruence on B
and we can study B

/︂
∼ .

Let A = (SZ, F) be the CA with local algebra A = ({0, 1}, f)1 where f(x, y, z) = (x +
z) mod 2 (A is the ECA 90). We define two mappings:

φ : B
/︂

∼ −→ A π : B −→ A

[0]∼ = {0, 2} ↦→ 0 0, 2 ↦→ 0
[1]∼ = {1, 3} ↦→ 1 1, 3 ↦→ 1

It is straightforward to verify that φ is an isomorphism between B
/︂

∼ and A. Thus, it
witnesses that A ∈ H(B). Moreover, one can easily check that the canonical extension of π
satisfies F ◦ π = π ◦ G (thus, we have explicitly found the map π from Observation 17, part
3.). Figure 4.1 illustrates how any space-time diagram of A can be obtained from a suitable
space-time diagram of B using π as the “translation mapping”.

Let us fix the notation from Observation 17. The mappings φ, ι, and π provide means of
“translating” between the space-time diagrams of A and B. It is crucial that the mappings
can be efficiently implemented by a computer program as they are extensions of mappings on
finite sets. Moreover, the simplicity of the mappings guarantees that they do not process the
information contained in the space-time diagrams in any non-trivial way. This is particularly
important since, e.g., whenever A ∈ S(B), we would like to conclude that B is computationally
stronger or equal to A.

In contrast to the CA isomorphism, we can consider a general isomorphism between the
algebras (SZ, F) and (TZ, G) that can be witnessed by an arbitrary mapping ψ : SZ → TZ (e.g.,
a non-recursive one). In such a case, we say that A and B are isomorphic as dynamical systems.

The operators S,H, and Pfin allow us to compare CAs’ local rules. However, they do not
take into account the most important aspect of cellular automata: the iterative application of
the local rules. Thus, we describe below the established notion of CA iterative powers also called
grouping [98]. This notion naturally extends the possible relationships we can study between
two automata and, together with the S,H, and Pfin operators, will lead to the definition of CA
simulation.

77

B = (TZ, G) with local algebra B = (Z4, g)1
g(x, y, z) = (x+ z) mod 4

A = (SZ, F) with local algebra A = (Z2, f)1
f(x, y, z) = (x+ z) mod 2

π :

0

1

0
1
2
3

π
G F

Figure 4.1: Illustration of Example 18. The figure shows that when A ∈ H(B), there exists
a canonical extension π which effectively “translates” space-time diagrams of B to any given
diagram of A.

4.2.2 Iterative Powers of CAs

Let B = (TZ, G) be a CA with local algebra B = (T, g)r. It is natural to iterate the global rule
G to obtain its powers Gn for each n ∈ N. This yields the “iterated” automaton (TZ, Gn). The
goal of this section is to describe the construction of the local algebra B[n] corresponding to the
iterated automaton (TZ, Gn) in such a way that the type of B and B[n] remains the same.

We start by defining a function ˜︁g which can be seen as an intermediate step between a
CA’s local map g (with inputs of fixed length 2r + 1) and its global map G (acting on infinite
sequences).

Definition 19. (Unravelling a local function) Let T be a finite set and g : T 2r+1 → T a function.
We extend g to a mapping ˜︁g : ⋃︁∞

k=2r+1 T
k →

⋃︁∞
k=1 T

k defined as:

˜︁g(u1 · · ·uk) = g(u1, . . . , u2r+1)g(u2, . . . , u2r+2) · · · g(uk−2r, . . . , uk)

for any u1 · · ·uk ∈ T k, k ≥ 2r + 1. By ˜︁gn we simply mean the composition ˜︁gn = ˜︁g ◦ ˜︁g ◦ · · · ◦ ˜︁g⏞ ⏟⏟ ⏞
n×

.

Each application of ˜︁g shortens the input sequence by 2r. Therefore, the n-th iteration shortens
the input by 2nr and ˜︁gn can be seen as a (2nr+1)-ary function function into T , formally˜︁gn
⃓⃓
T 2nr+1 : T 2nr+1 → T . This is illustrated in Figure 4.2.

˜︁g˜︁g˜︁g˜︁g
˜︁g4

Figure 4.2: Illustration of ˜︁g and ˜︁gn for a ternary (r = 1) function g and n = 4.

It is not hard to verify that the iterated CA (TZ, Gn) has the local algebra (T, ˜︁gn
⃓⃓
T 2nr+1)nr

with type 2nr + 1. Its type is different from (T, g)r whenever n > 1. Our goal is to introduce a
simulation relation between two automata via the notions of automata quotients, sub-automata,
finite products, and iterative powers. Therefore, we need all operators to preserve the type
of the CAs’ local algebras. For iterative powers, this can be achieved by “grouping together
sequences of n consecutive states”. This is formally defined below.

78

Definition 20. Let B = (TZ, G) be a CA with local algebra B = (T, g)r and let n ∈ N. We
define the unpacking map on : (Tn)Z → TZ for any configuration c ∈ (Tn)Z and any j ∈ Z,
j = nq + r, r < n, as

(︁
on (c)

)︁
j

= (cq)r.

This is illustrated in Figure 4.3.

o3

Figure 4.3: Diagram of the unpacking map o3.

Definition 21. Let B = (TZ, G) be a CA with local algebra B = (T, g)r and let n ∈ N. We
define the global map G[n] : (Tn)Z → (Tn)Z as G[n] = o−1

n ◦Gn ◦on. This yields a new dynamical
system

(︂
(Tn)Z, G[n]

)︂
. Further, we define the function g[n] : Tn × · · · × Tn⏞ ⏟⏟ ⏞

(2r+1)×

→ Tn as:

g[n](x−r, . . . ,xr) := ˜︁gn(x1
−r · · ·xn

−rx
1
−r+1 · · ·xn

−r+1 · · ·x1
r · · ·xn

r)

where for each i, xi = x1
i · · ·xn

i ∈ Tn. The function g[n] has arity 2r + 1 and is illustrated in
Figure 4.4.

Observation 22. Let B = (TZ, G) be a CA with local algebra B = (T, g)r and let n ∈ N. Then,(︂
(Tn)Z, G[n]

)︂
is a CA with local algebra (Tn, g[n]) and radius r.

Clearly, there is no automaton-isomorphism between (TZ, Gn) and
(︂
(Tn)Z, G[n]

)︂
since their

state spaces have different sizes. However, they are isomorphic as dynamical systems via the
unpacking mapping on : (Tn)Z → TZ. Thus, the two systems do have equivalent dynamics.

Definition 23 (Iterative power of an automaton). Let B = (TZ, G) be a CA with local
algebra B = (T, g)r. For n ∈ N, we define the n-th iterative power of B as the automaton
B[n] =

(︂
(Tn)Z, G[n]

)︂
with local algebra B[n] = (Tn, g[n])r.

g[4]

˜︁g˜︁g˜︁g˜︁g
Figure 4.4: Illustration of g[4] for a ternary function g.

In this way, the local algebra B[n] describes exactly n iterations of the CA’s local rule while
preserving the type of B. Therefore, each local algebra B of a CA gives rise to a series of
algebras of the same type, but operating on “larger scales” in both state space and time:

B = (T, g)r, B[2] = (T 2, g[2])r, B[3] = (T 3, g[3])r, . . .

Definition 24. Let K be a class of local algebras of a family of CAs with radius r. We define
the iterative power operator:

Ξ(K) = {A | ∃B ∈ K and n ∈ N such that A ∼= B[n]}.

79

In contrast to the operators H, S, and Pfin that are algebraic in their nature, Ξ can be viewed
as a geometrical transformation of a CA’s space-time diagrams. Indeed, the n-th iterative power
essentially “selects” every n-th row of the space-time diagram, and groups the “cells” together
into packages of n consecutive cells via the o−1

n operator. We can finally proceed to introducing
the general algebraic definition of CA simulation.

Definition 25. [CA simulation] Let A and B be cellular automata with local algebras A = (S, f)r

and B = (T, g)r respectively. We say that B simulates A if A ∈ HSPfinΞ(B); and we write
A ⪯ B or A ⪯ B.

Note that the simulation relation is well-defined only for cellular automata with the same
radius. However, whenever we consider an automaton A with radius r, we can also interpret it
as a CA with radius r′ ∈ N for any r′ > r in a natural way. This allows us to compare automata
with different radii afterall.

A perhaps more natural definition of simulation would be to require the following properties:
First, A ⪯ B if at least one of the following properties hold:

1. A ∈ S(B); A is (isomorphic to) a sub-automaton of B.

2. A ∈ H(B); A is (isomorphic to) a quotient automaton of B.

3. A ∈ Ξ(B); A is (isomorphic to) an iterative power of B.

4. A ∈ Pfin (H(B) ∪ S(B) ∪ Ξ(B)); A is (isomorphic to) a finite product of automata which
are themselves “simulated” by B.

This is well-motivated, since in all these cases, any computation in A can be easily recovered
from a computation in B. But any reasonable definition of simulation also must be transitive. In
the following subsection we prove that the transitive closure of the requirements above exactly
yields the CA simulation in Definition 25.

4.2.3 Elementary Properties of CA Simulation

Lemma 26. Let A be a local algebra of a CA A and let m,n ∈ N. Then, (A[m])[n] ∼= A[mn].

Proof. Let A = (SZ, F). Then by definition A[mn] =
(︂
(Smn)Z, F [mn]

)︂
; F [mn] = o−1

mn ◦Fmn ◦omn,
where omn : (Smn)Z → SZ is the unpacking map. Similarly, (A[m])[n] =

(︂(︁
(Sm)n

)︁Z
, (F [m])[n]

)︂
;

(F [m])[n] = o−1
n ◦

(︁
o−1

m ◦ Fm ◦ om
)︁n ◦ on, where om : Sm → S and on : (Sm)n → Sm. Let

φ : Smn → (Sm)n be the natural bijection. We will show that its extension φ satisfies
φ−1 ◦ (F [m])[n] ◦ φ = F [mn]. Then, Observation 17 already implies that the corresponding local
algebras are isomorphic. It is easy to verify that om ◦ on ◦ φ = omn. Then:

φ−1 ◦ (F [m])[n] ◦ φ = φ−1 ◦ o−1
n ◦

(︂
o−1

m ◦ Fm ◦ om

)︂n
◦ on ◦ φ

= φ−1 ◦ o−1
n ◦ o−1

m ◦ Fmn ◦ om ◦ on ◦ φ
= o−1

mn ◦ Fmn ◦ omn = F [mn].

Lemma 27. Let A1, . . . ,Ak be local algebras of some CAs with radius r and let n ∈ N. Then
(A1 × · · · × Ak)[n] ∼= A[n]

1 × · · · × A[n]
k .

Proof. Let Ai = (Si, fi)r for 1 ≤ i ≤ k. Similarly to Lemma 26, it is a straightforward, yet
technical verification that the natural bijection φ : (S1 × · · · × Sk)n → Sn

1 × · · · × Sn
k is an

isomorphism witnessing that (A1 × · · · × Ak)[n] ∼= A[n]
1 × · · · × A[n]

k .

Proposition 28. Let K be the class of local algebras of some class of CAs with radius r. Then,
HSPfinΞ(K) is already closed under the operators H,S,Pfin, and Ξ.

80

Proof. Let K′ be an arbitrary class of local algebras of the same type. It is a well-known result
from universal algebra [17] that:

HH(K′) = H(K′), SS(K′) = S(K′), PfinPfin(K′) = Pfin(K′)
SH(K′) ⊆ HS(K′), PfinH(K′) ⊆ HPfin(K′), PfinS(K′) ⊆ SPfin(K′).

Moreover, Lemma 26 implies ΞΞ(K′) = Ξ(K′) and Lemma 27 yields ΞPfin(K′) ⊆ PfinΞ(K′).
Further, in [98, Lemma 2] the authors showed: If A ∈ S(B) for any local algebras A, B of the
same type, then A[n] ∈ S(B[n]) for every n ∈ N. Thus, ΞS(K′) ⊆ SΞ(K′). In [35], the authors
outline the proof of ΞH(K′) ⊆ HΞ(K′). We give an explicit proof here.

Let A = (S, f)r and B = (T, g)r be such that A ∈ H(B) and let n ∈ N. We show that
A[n] ∈ H(B[n]). Since A ∈ H(B), there is some surjective homomorphism φ : T ↠ S of
the local algebras. We extend it to a surjective mapping ψ : Tn ↠ Sn simply by putting
ψ(x)i = φ(xi) for any x ∈ Tn and i ∈ {1, . . . , n}. Now it remains to verify that ψ : A[n] → B[n]

is a surjective homomorphism of the algebras. First, let m ≥ 2r + 1 and x1, . . . , xm ∈ T . We
show that ˜︁f(︁ ˜︁φ(x1 · · ·xm)

)︁
= ˜︁φ(︁˜︁g(x1 · · ·xm)

)︁
. Clearly, for every r ≤ i ≤ m − r, it holds that˜︁f(︁ ˜︁φ(x1 · · ·xm)

)︁
i

= f
(︁
φ(xi−r) · · ·φ(xi+r)

)︁
= φ

(︁
g(xi−r, . . . , xi+r)

)︁
= ˜︁φ(︁˜︁g(x1 · · ·xm)

)︁
i
. Further,

by induction we obtain that for every n ∈ N and every sequence x1, . . . , xm ∈ T , m ≥ 2nr + 1,
it holds that ˜︁fn

(︁ ˜︁φ(x1 · · ·xm)
)︁

= ˜︁φ(︁˜︁gn(x1 · · ·xm)
)︁
. Next, let x−r, . . . ,xr ∈ Tn. We have:

f [n](︁ψ(x−r), . . . , ψ(xr)
)︁

= ˜︁fn(︁ ˜︁φ(x−r · · · xr)
)︁

= ˜︁φ(︁˜︁gn(x−r · · · xr)
)︁

= ψ
(︁
g[n](x−r, . . . ,xr)

)︁
.

Thus, indeed, ψ : Tn ↠ Sn is a surjective homomorphism of algebras A[n] and B[n], and
A[n] ∈ H(B[n]). This already implies that ΞH(K′) ⊆ HΞ(K′).

Now we are ready to finish the proof that HSPfinΞ(K) is already closed under H, S,Pfin, and
Ξ. We show this for the operator Ξ:

ΞHSPfinΞ(K) ⊆ HΞSPfinΞ(K) ⊆ HSΞPfinΞ(K) ⊆ HSPfinΞΞ(K) = HSPfinΞ(K)

where the first inclusion uses that ΞH(K′) ⊆ HΞ(K′) for K′ = SPfinΞ(K) and the subsequent
inclusions follow similar logic. For the other operators, the proof is analogous and takes less
than one line, using the results summarized above.

Corollary 29. The CA simulation relation ⪯ is reflexive and transitive; i.e., it forms a preorder.

Proof. The reflexivity of ⪯ is clear. We briefly discuss the transitivity. Let A, B, C be local
algebras of CAs all with radius r ∈ N such that A ⪯ B and B ⪯ C. By definition, A ∈ HSPfinΞ(B)
and B ∈ HSPfinΞ(C). Thus, A ∈ HSPfinΞ(B) ⊆ HSPfinΞHSPfinΞ(C) = HSPfinΞ(C) where the
last equality holds due to Proposition 28. Hence, A ⪯ C.

Definition 30. Let r ∈ N. We define SINGr to be the class of local algebras of the form (S, f)r

where |S| = 1.

Clearly, any two local algebras in SINGr are isomorphic. Moreover, let A ∈ SINGr, and
consider any local algebra B = (S, f)r of a CA. Then, A ⪯ B since A ∈ H(B). Thus, SINGr

forms the minimum element within the class of all 1D CAs with radius r.
We note that our definition of CA simulation combines all classical algebraic operators that

preserve the finiteness of the algebras. This has the following advantage, which emphasizes the
connection to the field of universal algebra: For any class of local algebras K of CAs with radius
r, HSPfinΞ(K) forms a so-called pseudovariety. Thus, as shown in [42], HSPfinΞ(K) can be
characterized by a sequence of equations. Finding such equation sequences for different classes
of CAs can provide important insight into the structure of the simulation relation and is an
interesting line of future work.

81

4.3 Introducing Additive and Affine Automata

Additive automata are a much-studied class of CAs. Studying the automata simulated by them
leads naturally to a broader class of affine automata, which we now introduce.
Definition 31 (affine CA, additive CA). Let F be a finite field, V a finite-dimensional vector
space over F, and let A = (V Z, F) be a CA with local algebra (V, f)r. We say that A (or A) is
affine over F if f : V 2r+1 → V is an affine mapping between vector spaces over F. In such a
case, we can write f in the following form:

f(x−r, . . . ,xr) = f−r(x−r) + · · · + fr(xr) + c, (4.2)

where fi : V → V is a linear mapping for each −r ≤ i ≤ r and c ∈ V is a constant vector. The
mapping fi is called the i-th component of f . The class of all local algebras isomorphic to some
affine local algebra over F with radius r is denoted as AFFF

r .
In the special case when f : V 2r+1 → V is a linear mapping between vector spaces over F,

we say that A (or A) is additive over F. In such a case, we can write f as in (4.2) with c = 0.
We denote the class of all local algebras isomorphic to some local algebra additive over F with
radius r as ADDF

r . We say that A is canonical additive (or affine) if it is additive (or affine)
over Fp for some prime p and V = Fp.
Example 32. Let (FZ

2 , F) be the elementary CA 150 with local algebra A = (F2, f)1 where
f : F3

2 → F2 is defined as f(x, y, z) = x + y + z mod 2. Then, A is a CA additive over F2; in
fact, it is canonical additive.

Automata additive over finite fields of the form Fp, p prime, have been widely studied. In
fact, they form one of the few classes of cellular automata that are amenable to algebraic analysis
which yields rigorous results about their global dynamics. To name a few important results not
directly related to CA simulation, the properties of the additive CAs’ global dynamics have
been carefully analysed in the seminal work [96] and consequently in [3, 54, 70, 145]. We remark
that additive automata are sometimes also called linear in the literature.

The class of affine automata is a natural generalization of additive CAs that occurs when we
study sub-automata of additive CAs. As shown further in the next section, it is the case that
sub-automata of additive CAs need not be additive but are in general affine. To get acquainted
with the two notions, we start with a simple lemma and an example.
Lemma 33. Let F be a finite field and r ∈ N. Let A = (V, f)r be such that A ∈ AFFF

r . Then,
A ∈ ADDF

r if and only if there exists an idempotent element of f ; i.e., there exists v ∈ V such
that f(v, . . . ,v) = v.

Proof. Each additive CA has 0 as an idempotent element. In the other direction, let A = (V, f)r

be such that A ∈ AFFF
r , and suppose that v ∈ V is an idempotent of f . Let f−r, . . . , fr be the

components of f . We define the bijection φ : V → V as φ(v + x) = x for every x ∈ V . Next,
we define g : V 2r+1 → V as g(x−r, . . . ,xr) := ∑︁r

i=−r fi(xi). Then, the CA with local algebra
(V, g)r is additive, and it is straightforward to verify that (V, f)r

∼= (V, g)r via φ; indeed, for
any x−r, . . . ,xr we have:

φ
(︁
f(x−r + v, . . . ,xr + v)

)︁
= φ

(︁
f(v, . . . ,v) +

r∑︂
i=−r

fi(xi)
)︁

=
r∑︂

i=−r

fi(xi) =

=
r∑︂

i=−r

fi
(︁
φ(xi + v)

)︁
= g

(︁
φ(x−r + v), . . . , φ(xr + v)

)︁
.

Example 34. ADDF2
1 ⊊ AFFF2

1 . An example of an affine CA that is not isomorphic to
any additive one is the elementary CA 105 with local algebra (F2, f)1 where f(x, y, z) =
(x+y+z+1) mod 2 for any x, y, z ∈ F2. It is clear that neither 0 nor 1 are idempotent elements
of f .

82

Many of the results presented in this paper hold for affine CAs with at least two components
that are bijections. A special case of such rules are the left- or right-permutive CAs that are
well studied in the literature [81]. Below, we define the left- and right-permutivity for affine
automata in a slightly more general way compared to the classical definition to account for
the fact that we only study cellular automata with a symmetrical neighbourhood given by a
particular radius.

Definition 35. Let A = (V, f)r be an affine local algebra of a CA with radius r whose local
rule f has components f−r, . . . , fr. We say that A satisfies the bijective condition if at least two
of the components are bijections. We say that A is left-permutive, witnessed by i, if there exists
−r ≤ i ≤ r such that fi is a bijection and fk is the constant 0 mapping for all k < i. Similarly,
A is right-permutive, witnessed by j, if there exists −r ≤ j ≤ r such that fj is a bijection and
fk is the constant 0 mapping for all k > j.

We write that A ∈ AFFF
r;i,j if A ∈ AFFF

r and at the same time A is left-permutive witnessed
by i and right-permutive witnessed by j, i < j. Clearly, all such algebras satisfy the bijective
condition. Analogously, we define the subclass ADDF

r;i,j .

Now we can state the main result of this paper that we prove in Section 4.4:

Theorem 36. Let p be a prime, r ∈ N, and −r ≤ i < j ≤ r. Let A, B be local algebras of
cellular automata with radius r such that B ∈ AFFFp

r;i,j. If A ⪯ B, then A ∈ AFFFp

r;i,j.

4.3.1 Related Work on CA Simulation

In their seminal work [98], Mazoyer and Rapaport study the properties of a strongly related
notion of CA simulation based on iterative powers and sub-automata. In [97], they specifically
focus on showing that a particular class of canonical additive CAs is limited in terms of what it
can simulate. Subsequently, their work was continued in [34], where the authors introduce a
generalized version of the iterative powers of CAs that we denote here by ˜︁Ξ for clarity. Informally,˜︁Ξ allows for much more general geometrical transformations of the CA space-time diagrams.
Whereas Ξ is based on grouping together blocks of consecutive “cells” via the operators on,˜︁Ξ allows for groupings of much more general patterns, as well as, e.g., shifts of the CA’s
configuration space. In their subsequent work [35], the same authors introduce various notions
of CA simulation; the most general one is roughly defined below.

Definition 37 (CA Simulation: Delorme, Mazoyer, Ollinger, Theyssier [35]). Let A and
B be two 1D CAs both with radius r ∈ N. For their local algebras, we write A ⪯m B if˜︁Ξ(A) ∩ HS˜︁Ξ(B) ̸= ∅.

Both lines of work ([97, 98] and [34, 35]) analyse various important properties of the
different CA simulations. This includes studying the simulation limitations of a special family
of additive automata, namely those with local algebras of the form Zp = (Fp, f)1 where
f(x, y, z) = (x+ y + z) mod p. Their negative result is that whenever p ̸= q, one has Zp ⪯̸m Zq.
The authors use two observations:

1. Let A, B be local algebras of CAs with radius r. Then, ˜︁Ξ(A) ∩ HS˜︁Ξ(B) ̸= ∅ if and only if˜︁Ξ(A) ∩ HSΞ(B) ̸= ∅.

2. Let A be a local algebra of a CA with p states. Then the algebras in ˜︁Ξ(A) have pk states,
k ≥ 1.

Given the observations, the authors reduce the problem of showing Zp ⪯̸m Zq for p ̸= q to
proving that any algebra in HSΞ(Zq) has ql elements for some l ≥ 0. Assuming this extra piece
of knowledge, comparing the sizes of algebras in HSΞ(Zq) and in ˜︁Ξ(Zp) already implies the
negative result, as pk ̸= ql for k ≥ 1, l ≥ 0.

83

The crucial information about possible sizes of algebras in HSΞ(Zq) follows immediately
from our results. (This is not surprising, since Theorem 36 provides a lot of information about
the structure of these algebras.) Indeed: For every prime q, clearly Zq ∈ ADDFq

1;−1,1. By
Theorem 36, any local algebra in HSΞ(Zq) belongs to AFFFq

1;−1,1; therefore it has an underlying
structure of a vector space over Fq and hence, it has ql elements.

4.4 Simulation Limitations of Additive and Affine Automata

In this section, we prove Theorem 36. In more detail, we will show that for any finite field Fp, p
prime, any r ∈ N, and any −r ≤ i < j ≤ r, it holds that:

HSPfinΞ(AFFFp

r;i,j) = AFFFp

r;i,j , (4.3)

HSPfinΞ(ADDFp

r;i,j) = AFFFp

r;i,j . (4.4)

Theorem 36 is then a direct consequence of (4.3). Concretely, we will show this result by
studying how the operators Ξ, Pfin, S, and H change the sets AFFFp

r;i,j and ADDFp

r;i,j .

Lemma 38. Let A be a local algebra of a CA that is affine (or additive) over a finite field F
and let n ∈ N. Then A[n] is again affine (or additive) over F.

Proof. Let A = (V, f)r where f has linear components f−r, . . . , fr and f(x−r, . . . ,xr) =
f−r(x−r) + · · · +fr(xr) + c for some constant c ∈ V ; x−r, . . . ,xr ∈ V . We put g(x−r, . . . ,xr) :=
f(x−r, . . . ,xr) − c and B := (V, g)r. Clearly, B is additive over F. Let n ∈ N; we first show that
B[n] is also additive. It is straightforward to verify that for each k ≥ 2r + 1, ˜︁g⃓⃓

V k : V k → V k−2r

is a linear mapping of vector spaces. Thus, since composition of linear mappings is linear, we
have that ˜︁gn

⃓⃓
V n(2r+1) : V n(2r+1) → V n is also linear. It is then a straightforward yet slightly

technical step to verify that g[n] is a linear mapping and thus, that B[n] is additive over F.
Next, we observe that ˜︁f(x1 · · · xk) = ˜︁g(x1 · · · xk) + c c · · · c c⏞ ⏟⏟ ⏞

k−2r ×

and that ˜︁f(︁(x1 · · · xk) +

(y1 · · · yk)
)︁

= ˜︁g(x1 · · · xk) + ˜︁f(y1 · · · yk) for any k ≥ 2r + 1 and any x1, . . . ,xk,y1, . . . ,yk ∈ V .
Combining these two facts, it is straightforward to verify by induction on n that for any
k ≥ 2nr + 1 ˜︁fn(x1 · · · xk) = ˜︁gn(x1 · · · xk) + ˜︁fn−1(c c · · · c c⏞ ⏟⏟ ⏞

k−2r ×

)

for each x1, . . . ,xk ∈ V . For k = n(2r + 1) we get that f [n](·) = g[n](·) + d for a constant
d ∈ V n and thus, that A[n] is affine over F.

Lemma 39. Let A be a local algebra of a CA affine over F. If A is left-permutive witnessed by
i then for each n ∈ N, A[n] is also left-permutive witnessed by i. Analogous property holds for
right-permutive local algebras.

Proof. This is a straightforward generalization of Lemma 3 from [97].

We note that the notion of left and right-permutivity can be defined for arbitrary CAs,
not just for affine ones. In such a case, the statement in Lemma 39 can be generalized to the
broader definition as the proof does not rely in any fundamental way on the fact that the CA’s
local rule is affine.

Corollary 40. Let F be an arbitrary finite field, r ∈ N, and −r ≤ i < j ≤ r. Then:

Ξ(AFFF
r) = AFFF

r ,

Ξ(AFFF
r;i,j) = AFFF

r;i,j ,

Ξ(ADDF
r) = ADDF

r ,

Ξ(ADDF
r;i,j) = ADDF

r;i,j .

84

Observation 41. Let A1, . . . ,Ak be local algebras of CAs with radius r that are affine (or
additive) over a finite field F. Then, A = A1 × · · · × Ak is again affine (or additive) over F.
Moreover, let −r ≤ i < j ≤ r. If the algebras A1, . . . ,Ak all have their i-th and j-th components
bijective, then so does A.

Corollary 42. Let F be an arbitrary finite field, r ∈ N, and −r ≤ i < j ≤ r. It holds that:

Pfin(AFFF
r) = AFFF

r ,

Pfin(AFFF
r;i,j) = AFFF

r;i,j ,

Pfin(ADDF
r) = ADDF

r ,

Pfin(ADDF
r;i,j) = ADDF

r;i,j .

Thus, we have shown that both the operators Ξ and Pfin preserve the class of AFFF
r;i,j for

each finite field F, each radius r ∈ N, and each −r ≤ i < j ≤ r. Below, we show similar results
for the operators S and H under the assumption that the affine automata satisfy the bijective
condition. In what follows, p always denotes a prime number.

4.4.1 Sub-automata of affine CAs

In this section, we study the operator S on the class of affine automata. Compared to the part
about Pfin and Ξ, our results need more assumptions: We only work over the prime fields Fp

and we require the bijective condition (see Definition 35). The importance of the assumptions
is illustrated in Example 51 where we exhibit an affine CA violating the bijective condition that
contains a sub-automaton that is not affine.

We start by noticing that certain invariant subspaces produce a natural family of sub-
automata.

Observation 43. Let B = (V, f)r be the local algebra of a CA affine over Fp. Suppose
that W ≤ V is a subspace invariant under all components of f and that v ∈ V satisfies
f(v, . . . ,v) ∈ v +W . Then A = (v +W, f

⃓⃓
(v +W)2r+1)r belongs to S(B).

Assuming the bijective condition, the observation can be turned into an equivalence – every
sub-automaton is of the simple form described above.

Proposition 44. Let B be a CA with local algebra B = (V, f)r that is affine over Fp and satisfies
the bijective condition. Let A be a sub-automaton of B with the local algebra A = (U, f

⃓⃓
U2r+1)r.

Then, U = v +W for a subspace W ≤ V invariant under all components of f and v ∈ V such
that f(v, . . . ,v) ∈ v +W .

Proof. Let f−r, . . . , fr be the components of f and f(x−r, . . . ,xr) = ∑︁r
i=−r fi(xi) + c for some

c ∈ V . Let us fix −r ≤ i < j ≤ r such that fi and fj are bijections. We put Ui := fi(U) ⊆ V
and Uj := fj(U) ⊆ V and we note that |Ui| = |Uj | = |U | =: k. We first show that both Ui and
Uj are affine subspaces of V . We have that:

k = |U | ≥ |f(U, . . . , U)| = |f−r(U) + · · · + fr(U)| ≥ |fi(U) + fj(U)| = |Ui + Uj | ≥ |Ui| = k.

Thus, we also have |Ui + Uj | = k. Let ui ∈ Ui and uj ∈ Uj . We put Wi := Ui − ui and
Wj := Uj − uj . Then clearly 0 ∈ Wi and 0 ∈ Wj and moreover, since translations do not
change the set sizes, |Wi| = |Wj | = |Wi +Wj | = k. Hence, Wi +Wj is equal to some set W and
W ⊇ Wi +0 = Wi. Since Wi has the same size as W , this yields Wi = W . Analogously, we have
Wj = W and thus W = Wi = Wj = Wi +Wj = W +W . This proves that W is closed under
addition, which is over Fp sufficient to make it a vector subspace of V . Finally, Ui = ui +W
and Uj = uj +W are both affine subspaces of V , one being just a translation of the other.

Now, pick any u ∈ U and put v :=
(︁∑︁r

l=−r fl(u)
)︁

− fi(u) + ui + c. Then:

U ⊇ f(U, . . . , U) ⊇ f−r(u) + · · · + fi−1(u) + Ui + fi+1(u) + · · · + fr(u) + c = v +W.

85

Since |U | = |W |, we get U = v +W .
It is left to show that the subspace W is invariant under all components of f . For any fixed

k with −r ≤ k ≤ r, we show that fk(W) ≤ W :

v +W ⊇ f(v +W, . . . ,v +W) = f(v, . . . ,v) + f−r(W) + · · · + fr(W) ⊇ f(v, . . . ,v) + fk(W).

Since fk(W) is a subspace, this immediately yields f(v, . . . ,v) ∈ v +W as well as fk(W) ≤ W ,
which concludes the proof.

At this point, it remains to show that the sub-automaton A = (v +W, f
⃓⃓
(v +W)2r+1)r from

the previous proposition is indeed isomorphic to an affine automaton (whose states must form a
vector space, not an affine subspace).

Corollary 45. Let r ∈ N, −r ≤ i < j ≤ r. It holds that S(AFFFp

r;i,j) = AFFFp

r;i,j.

Proof. Take a B = (V, f)r ∈ AFFFp

r;i,j , and consider any A ∈ S(B). From Proposition 44, we
already know that A is of the form A = (v +W, f

⃓⃓
(v +W)2r+1)r where W ≤ V is a subspace

invariant under all components of f , v ∈ V , and f(v, . . . ,v) ∈ v +W . We need to construct a
local algebra A′ affine over Fp such that A ∼= A′.

There is a w ∈ W such that f(v, . . . ,v) = v + w. We define A′ = (W, g)r where for any
x−r, . . . ,xr ∈ W , g(x−r, . . . ,xr) := ∑︁r

i=−r fi(xi) + w. Since W is invariant under components
of f , indeed g : W 2r+1 → W . Thus, (W, g)r is affine over Fp with linear components gk = fk

⃓⃓
W

;
in particular, gi and gj are bijections. Let us define φ : v +W → W by φ(v + x) = x for any
x ∈ W . Then, it is straightforward to verify that A ∼= A′ via φ. Indeed, for any x−r, . . . ,xr ∈ W ,
we have:

φ
(︁
f(v + x−r, . . . ,v + xr)

)︁
= φ

(︁
f(v, . . . ,v) +

r∑︂
i=−r

fi(xi)
)︁

= φ
(︁
v + w +

r∑︂
i=−r

fi(xi)
)︁

= w +
r∑︂

i=−r

fi(xi) = g(x−r, . . . ,xr).

4.4.2 Sub-automata of additive CAs

This section is not part of the proof of Theorem 36; rather, it shows that the analogy for additive
automata does not hold, as a sub-automaton of an additive automaton need not be additive.
Rather, it turns out that affine automata can be introduced as sub-automata of additive ones.

Proposition 46. Let r ∈ N, −r ≤ i < j ≤ r. It holds that S(ADDFp

r;i,j) = AFFFp

r;i,j.

Proof. Corollary 45, together with the fact that additive automata are a subclass of affine
ones, yields S(ADDFp

r;i,j) ⊆ S(AFFFp

r;i,j) = AFFFp

r;i,j . We complement the results by showing that
AFFFp

r;i,j ⊆ S(ADDFp

r;i,j). Let A be an affine CA with local algebra A = (V, f)r, A ∈ AFFFp

r;i,j .
We construct a CA B with local algebra B ∈ ADDFp

r;i,j such that A ∈ S(B). As always, write
f : V 2r+1 → V as f(x−r, . . . ,xr) = f−r(x−r) + · · · + fr(xr) + c where fi : V → V are linear
mappings and c ∈ V is a constant. We put W = V × Fp. We fix a basis (v1, . . . ,vk−1) of V ;
then, B := (w1, . . . ,wk−1,wk) :=

(︁
(v1, 0), . . . , (vk−1, 0), (0, 1)

)︁
is a basis of W . We define linear

mappings gi : W → W for each −r ≤ i ≤ r on the basis B as follows:

gi(wj) :=
(︁
fi(vj), 0

)︁
gi(wk) :=

⎧⎪⎪⎨⎪⎪⎩
(0, 1)
(0,−1)
(− c, 1)

for all − r ≤ i ≤ r and 1 ≤ j ≤ k − 1,
for − r ≤ i < 0,
for 0 < i ≤ r,

for i = 0.

86

We put g(x−r, . . . ,xr) = g−r(x−r) + · · · + gr(xr) + (c, 0) for any x−r, . . . ,xr ∈ W and define
the automaton B with local algebra B = (W, g)r. Clearly A ∼= (V ×{0}, g

⃓⃓
(V ×{0})2r+1), so indeed

A ∈ S(B). From the construction, it is clear that for each −r ≤ i ≤ r, gi is bijective whenever fi is.
Furthermore, g(wk, . . . ,wk) = (0, 1) + · · · + (0, 1)⏞ ⏟⏟ ⏞

r ×

+(− c, 1) + (0,−1) + · · · + (0,−1)⏞ ⏟⏟ ⏞
r ×

+(c, 0) =

(0, 1) = wk. Thus, g has an idempotent element, and due to Lemma 33, B ∈ ADDFp

r;i,j .

4.4.3 Quotient automata of affine CAs

In this section, we study the operator H on the class of affine automata. Again, the bijective
condition is required; in Example 52 we construct an affine CA violating the bijective condition
that contains a quotient automaton that is not affine.

We start by a simple observation: Every invariant subspace gives rise to a congruence and
thus, to a quotient automaton. Subsequently, we show the converse: If an affine CA B satisfies
the bijective condition, then each congruence on B is already a congruence of the underlying
vector space. To complement the result, in Example 53 we construct an affine CA violating the
bijective condition with a congruence that is not a congruence of the vector space.

Observation 47. Let B be an affine CA over a finite field F with local algebra B = (V, f)r. Let
W ≤ V be a subspace invariant under all components of f . We define ∼ ⊆ V × V as follows:
u ∼ v if and only if u − v ∈ W . Then, ∼ is a congruence on B.

In several steps, we now proceed to show that under the above-mentioned conditions, every
quotient automaton is of the form described by Observation 47.

Lemma 48. Let B be a CA with local algebra B = (V, f)r that is affine over a finite field F and
satisfies the bijective condition. Denote the linear components of f by fk : V → V ; −r ≤ k ≤ r.
For every congruence ∼ ⊆ V × V on B and every u,u′,v,v′ ∈ V it holds that:

1. If u ∼ u′ then fk(u) ∼ fk(u′) for all −r ≤ k ≤ r.

2. Moreover, if fk is a bijection for some −r ≤ k ≤ r, then fk(u) ∼ fk(u′) implies u ∼ u′.

3. If u ∼ u′ and v ∼ v′ then u + v ∼ u′ + v′.

4. If F = Fp for some prime p, then [0]∼ = {x ∈ V | x ∼ 0} is a subspace of V invariant
under all components of f .

Proof. Throughout the proof, we write f(x−r, . . . ,xr) = ∑︁r
i=−r fi(xi) + c with components

fk : V → V , −r ≤ k ≤ r and with c ∈ V . We denote the two bijective components by fi and
fj ; note that this is more general than assuming B ∈ AFFF

r;i,j , as we do not require fi and fj to
be the “outer” components.

1.: Let −r ≤ k ≤ r such that k ̸= i. Since fi is a bijection, there exists b ∈ V such that
fi(b) = − c. Then:

fk(u) = fk(u) − c + c = f(0, . . . ,0,u,0, . . . ,0,b,0, . . . ,0) ∼
∼ f(0, . . . ,0,u′,0, . . . ,0,b,0, . . . ,0) = fk(u′) − c + c = fk(u′),

where u,u′ are on the k-th position and b is on the i-th. The proof is analogous if k = i as we
can use the bijective component fj .

2.: If fk is bijective and fk(u) ∼ fk(u′), we can repeatedly apply part 1. to get fn
k (u) ∼ fn

k (u′)
for every n ∈ N. Since fk : V → V is an automorphism of a finite-dimensional vector space over
a finite field, there exists n such that fn

k = id. Thus, u = fn
k (u) ∼ fn

k (u′) = u′.

87

3.: Let u ∼ u′. We first show that u − c ∼ u′ − c. There exist some a,a′ ∈ V such that
fi(a) = u and fi(a′) = u′ and from 2., it holds that a ∼ a′. There also exists a b ∈ V such
that fj(b) = − c − c. Then:

u − c = fi(a) + fj(b) + c = f(0, . . . ,0,a,0, . . . ,0,b,0, . . . ,0) ∼
∼ f(0, . . . ,0,a′,0, . . . ,0,b,0, . . . ,0) = fi(a′) + fj(b) + c = u′ − c,

where a,a′ are on the i-th position and b is on the j-th. Next, let v ∼ v′ and let y,y′ ∈ V
be such that fj(y) = v and fj(y′) = v′. Since u − c ∼ u′ − c, we find x,x′ ∈ V such that
fi(x) = u − c, fi(x′) = u′ − c, and from 2., we again have x ∼ x′. Then:

u + v = (u − c) + v + c = fi(x) + fj(y) + c = f(0, . . . ,0,x,0, . . . ,0,y,0, . . . ,0) ∼
∼ f(0, . . . ,0,x′,0, . . . ,0,y′,0, . . . ,0) = fi(x′) + fj(y′) + c = (u′ − c) + v′ + c = u′ + v′,

where x,x′ are on the i-th position and y,y′ are on the j-th.
4.: By 3., the congruence ∼ “respects addition” in V . If F = Fp, then multiplication

of vectors from V by scalars from F is generated by addition in V , and therefore ∼ also
“respects multiplication by scalars”. Hence, ∼ is not only a congruence on the algebra but also a
congruence on the vector space V , and thus [0]∼ ≤ V . By 1., the subspace [0]∼ is invariant
under all components of f .

We now need to exploit the information about [0]∼ to infer knowledge about the quotient
space.

Corollary 49. Let r ∈ N and −r ≤ i < j ≤ r. Then H(AFFFp

r;i,j) = AFFFp

r;i,j. Moreover,
H(ADDFp

r;i,j) = ADDFp

r;i,j.

Proof. Let B be an affine CA with local algebra B = (V, f)r ∈ AFFFp

r;i,j , and consider a
congruence ∼ on B. Let A = B

/︂
∼ = (V

/︂
∼ , h)r be the quotient algebra of B. By Lemma

48, part 4., ∼ is a congruence on the vector space V and thus, V
/︂

∼ is again a vector
space over Fp. Let W = [0]∼. Then V

/︂
∼ = {x +W | x ∈ V }. For each −r ≤ l ≤ r

we define hl(x +W) := fl(x) + W for any x ∈ V . Thanks to Lemma 48, 1., hl : V
/︂

∼ →
V
/︂

∼ is a well-defined mapping. Clearly, it is a linear mapping on V
/︂

∼ . By definition,
h(x−r +W, . . . ,xr +W) = f(x−r, . . . ,xr) +W = ∑︁r

l=−r fl(xl) + c +W . This is further equal to∑︁r
l=−r

(︁
fl(xl) +W

)︁
+ (c +W) = ∑︁r

l=−r hl(xl +W) + (c +W). This shows, as expected, that h is
indeed an affine mapping with components hl, −r ≤ l ≤ r. Clearly, if fl is a bijection for some
−r ≤ l ≤ r, then hl is surjective and therefore also a bijection. Thus, A = B

/︂
∼ = (V

/︂
∼ , h)r

is a CA affine over Fp whose local rule has its i-th and j-th component bijective. This finishes
the proof in the affine case.

To conclude the second part of the statement: If B ∈ ADDFp

r;i,j , then 0 ∈ V is an idempotent
of f , so it is easy to see that [0]∼ is an idempotent for A = B

/︂
∼ . Hence A ∈ ADDFp

r;i,j .

4.4.4 Main Result and Examples

Combining Corollaries 40, 42, 45, 49, and Proposition 46 yields the following main result. Note
that the announced Theorem 36 is just another formulation of (4.5).

Theorem 50. For any r ∈ N, −r ≤ i < j ≤ r, and any prime p it holds that

HSPfinΞ(AFFFp

r;i,j) = AFFFp

r;i,j , (4.5)

HSPfinΞ(ADDFp

r;i,j) = AFFFp

r;i,j . (4.6)

88

When analysing the sub-automata and quotient automata of affine CAs, we relied on
the assumption that the CA has its two components bijective. We now give two simple
counterexamples of affine CAs violating this condition that contain a sub-automaton or a
quotient automaton that is not affine.

Example 51. Let V be a finite-dimensional vector space over F2 and let B be an additive
CA over F2 with local algebra B = (V, f)r where f has components fi : V → V , −r ≤ i ≤ r.
Suppose that there exist vectors v1 ̸= v2 ∈ V such that fi(v1) = fi(v2) = 0 for each −r ≤ i ≤ r.
Let S = {v1,v2,0} and A = (S, f

⃓⃓
S2r+1). Then A ∈ S(B), but clearly A is not affine over F2

because S cannot be isomorphic to any vector space over F2.

Example 52. Let V be a finite-dimensional vector space over F2 and let B be an additive CA
over F2 with local algebra B = (V, f)r; |V | = 2k > 2. Suppose that Im (f) ̸= V ; |Im (f)| =
2l ≥ 2. We define ∼ ⊆ V × V as follows: u ∼ u for each u ∈ V and u ∼ v if and only if
u,v ∈ Im (f). It is straightforward to verify that ∼ is a congruence on B that partitions V into
the following equivalence classes: Im (f) and 2k − 2l classes each containing a single element.
Thus, 2 ∤ |B

/︂
∼| = 2k − 2l + 1 and therefore, B

/︂
∼ is not isomorphic to any vector space over

F2.

Example 53. Let V be a finite-dimensional vector space over F2 and let B be an additive
CA over F2 with local algebra B = (V, f)r where f has components fi : V → V , −r ≤ i ≤ r.
Suppose that the linear map f0 ̸= id is a bijection and all the other components are constant
zero mappings. We define a relation ∼ ⊆ V × V such that u ∼ v if and only if there exists
some k ≥ 0 such that fk

0 (u) = v. Since f0 is bijective on a finite set V , ∼ is symmetrical and
therefore an equivalence. Further, it is straightforward to verify that ∼ is a congruence on B.
Then [0]∼ = {0}, but there exists a v ∈ V such that |[v]∼| > 1. Thus, ∼ is not a congruence of
the vector space V .

Example 54 (ECA 60). Let us consider the class of elementary CAs; i.e., CAs with states
F2 and radius r = 1. We consider elementary CA 60 that is defined as ECA60 = (F2, f)1
where f(x, y, z) = x+ y mod 2 and ECA 195 defined as ECA195 = (F2, g)1 where g(x, y, z) =
x+ y + 1 mod 2. Clearly, ECA195 ∼= ECA60 via the bijection that exchanges 0 and 1. Further,
ECA60,ECA195 ∈ AFFF2

1;−1,0 and they are the only two elementary CAs that belong to this
class. Thus, Theorem 50 implies that the only elementary CA that can be simulated by ECA
60 is itself (up to isomorphism).

Canonical Affine Cellular Automata Canonical affine CAs form the most studied subclass
of affine automata. For them, analysing HSPfinΞ(A) becomes simple again. Suppose A is affine
over Fp with local algebra A = (Fp, f)r and has its local rule of the form f(x−r, . . . , xr) =
a−rx−r + · · · + arxr + c for some coefficients a−r, . . . , ar ∈ Fp and c ∈ Fp. Then, we can
distinguish the following cases:

1. ai = 0 for all −r ≤ i ≤ r. In such a case, the CA is a constant zero mapping and studying
HSPfinΞ(A) is trivial.

2. ai ≠ 0 for some −r ≤ i ≤ r and aj = 0 for all j ̸= i. Then, the CA is essentially a “shift
operator” and again, studying HSPfinΞ(A) is simple.

3. There are two non-zero coefficients ai and aj , i < j (we can take i to be the smallest
such coefficient and j the largest one). Hence, A ∈ AFFF

r;i,j and the results of this section
apply.

89

4.5 Concluding Remarks

We stress that an important part of the merit of this paper lies in formalizing the notion of
CA simulation into algebraic language. This makes it possible to see new connections to well
established fields of abstract algebra. Whereas the proofs provided in this paper do not rely on
any sophisticated algebraic concepts, we remark that, as an example, Lemma 48 and Corollary
49 are a direct consequence of a deeper theorem by Smith [138] and Gumm [55] about Abelian
algebras with a Maltsev term.

We believe that the connection with abstract algebra can provide powerful tools for deriving
a plethora of both negative and positive results regarding the simulation capacity of various CA
classes in the future.

90

5. Simulation Capacity of Canonical
Additive Automata
In the previous chapter, we have shown that the class AFFFp

r;i,j is closed under all the operators
H, S,Pfin,Ξ for any prime p, any radius r, and any −r ≤ i < j ≤ r. As a consequence, automata
with “bijective outer components” that are affine over different prime fields Fp are incomparable
with respect to the simulation relation ⪯. However, this gives us no information about the
relation of two particular CAs within the same class AFFFp

r;i,j . In this chapter, we complement
the previous results by analysing the simulation capacity of individual additive automata.
Specifically, we will analyse HSPfinΞ(A) for the local algebra A of any canonical additive CA
satisfying certain conditions. As a special case, this will allow us to describe the simulation
capacities of any canonical additive CA with radius r = 1 (over an arbitrary field Fp).

Recall that canonical additive CAs have a local algebra of the form (Fp, f)r for some prime
p ∈ P. Thus, the local map f : F2r+1

p → Fp is defined as f(x−r, . . . , xr) = a−rx−r + · · ·+arxr for
some a−r, . . . , ar ∈ Fp. We simply say that f is given by (a−r, . . . , ar); and we call a−r, . . . , ar

its coefficients. We note that canonical CAs having at most one non-zero coefficient are trivial to
analyse. Thus, in this chapter, we focus on studying CAs with at least two non-zero coefficients.
Such CAs satisfy the bijective condition (see Definition 35), which allows us to use some results
from the previous chapter.

Canonical additive CAs represent a highly specific subset within the broader category of
additive automata. Nevertheless, they remain a focal point in the existing literature, underscoring
their significance.

Now we define a stronger version of the useful bijective condition. Most of the results in
this chapter are obtained assuming this property.

Definition 55. Let B = (Fp, f)r be a CA local algebra such that B ∈ ADDFp

r;i,j for some
−r ≤ i < j ≤ r. Let f : F2r+1

p → Fp be given by (a−r, . . . , ar). We say that f (or B) is doubly
bijective if ai+1 ̸= 0 and aj−1 ̸= 0.

Example 56. Let A = (Fp, f)1 such that f(x, y, z) = x+ y + z and let B = (Fp, g)1 be such
that g(x, y, z) = x+ z. Then A is doubly bijective but B is not.

5.1 Results Summary

We summarize four auxiliary results that we prove throughout this chapter.

Proposition 57. For any local algebra B = (Fp, f)r of a canonical additive CA it holds that:

(1) B[pk] ∼= B × · · · × B⏞ ⏟⏟ ⏞
pk×

for any k ∈ N.

(2) More generally, B[pk·l] ∼= B[l] × · · · × B[l]⏞ ⏟⏟ ⏞
pk×

for any k, l ∈ N.

(3) If B is doubly bijective then for l ∈ N such that p ∤ l, the algebra B[l] has only trivial
subalgebras and quotient algebras.

(4) If B = (Fp, f)1 is given by (a, 0, b), a, b ̸= 0, then for l ∈ N odd such that p ∤ l, the algebra
B[l] has only trivial subalgebras and quotient algebras.

Proof. This is proven as Corollary 63, Corollary 64, Proposition 81 and Proposition 84, respec-
tively.

91

After some work (see Section 5.3) this yields the following two main results of this chapter:

Theorem 58. Let B = (Fp, f)r be a doubly bijective local algebra of a canonical additive CA.
Then:

HSPfinΞ(B) = PfinΞ(B) ∪ SINGr.

In plain words, if A is simulated by B then A is isomorphic to a finite product of some
iterative powers of B. Moreover, as we will see, the exponents in the iterative powers can all be
chosen to be coprime with p.

Theorem 59. Let B = (Fp, f)1 be a local algebra of a canonical additive CA with f(x, y, z) =
ax+ bz; a, b ̸= 0. Let B′ = (Fp, f

′)1 where f ′(x, y, z) = a2x+ 2aby + b2z. Then:

HSPfinΞ(B) = PfinΞ({B,B′}) ∪ SINGr.

The two theorems above already describe the computational capacity of any canonical
additive CA with radius r = 1 that is non-trivial in the sense that at least two of its components
are non-zero. As a special case, we obtain the following corollary.

Corollary 60. Let p be a prime and consider the class CAp of all CAs with p states and radius
r = 1. Let B = (Fp, f)1 be the local algebra of a canonical additive CA given by (a−1, a0, a1)
with at least two non-zero coefficients. Then, one of the following cases holds:

(1) a0 ̸= 0. Then B is doubly bijective and within the class CAp, B can only simulate itself
(up to isomorphism).

(2) a0 = 0. Then, within the class of CAp, B can simulate (up to isomorphism) exactly itself
and the automaton with local algebra B′ = (Fp, f

′)1 given by (a2
−1, 2a−1a1, a

2
1). Note that

B ∼= B′ if and only if p = 2.

The corollary implies new results about simulation limitations even for the very well-studied
case of elementary CAs. We describe one such example below.

Example 61. We consider elementary CA 90 that is defined as ECA90 = (F2, f)1 where
f(x, y, z) = x+ z mod 2 and ECA 165 defined as ECA165 = (F2, g)1 where g(x, y, z) = x+ z +
1 mod 2. Clearly, ECA90 ∼= ECA165 via the mapping that exchanges 0 and 1. Then, Corollary
60 implies that within the class of elementary CAs, ECA 90 can only simulate itself and ECA
165.

Proof. Clearly, ECA 90 satisfies the assumptions of Corollary 60 (2). In the case of a CA
additive over F2, the local algebras B and B′ coincide (using the notation in the corollary).
Thus, the corollary yields that ECA 90 can only simulate elementary CAs whose local algebras
are isomorphic to ECA90. In this case, we have only one bijection on F2 that is not identity,
and this yields the ECA 165.

5.2 Iterative Powers of Canonical Additive CAs Split into Prod-
ucts

In this section, we prove the parts (1) and (2) of Proposition 57.

Lemma 62 (Martin, Odlyzko, Wolfram [96]). Let B ∈ ADDFp
r be a local algebra of a canonical

additive CA; B = (Fp, f)r where f is given by (a−r, . . . , ar). Then, for each k ∈ N, it holds that
f [pk](x−r, . . . ,xr) = a−r x−r + · · · + ar xr for any x−r, . . . ,xr ∈ Fpk

p .

92

Proof. The reader can find the detailed proof in the seminal paper on additive automata [96].
We only outline it here. Each configuration c ∈ FZ

p can be associated with a generating function
c(x) = Σ∞

i=−∞cix
i. Let l(x) = arx

−r + ar−1x
−r+1 + · · · + a−rx

r. Then, for the CA’s global rule
F it is easy to verify that the generating sequence for F (c) corresponds to l(x) · c(x) where the
coefficients of the polynomials are computed over Fp. Then, Fn(c) corresponds to l(x)n · c(x)
for each n ∈ N. Since the Frobenius endomorphism x ↦→ xpk acts as the identity on Fp, we have:
l(x)pk = apk

r x
−rpk + apk

r−1x
(−r+1)pk + · · · + apk

−rx
rpk = arx

−rpk + ar−1x
(−r+1)pk + · · · + a−rx

rpk .
This already implies f [pk](x−r, . . . ,xr) = a−r x−r + · · · + ar xr; x−r, . . . ,xr ∈ Fpk

p .

Corollary 63. Let B ∈ ADDFp
r be a local algebra of a canonical additive CA and let k ∈ N.

Then,
B[pk] ∼= B × · · · × B⏞ ⏟⏟ ⏞

pk×

.

Corollary 64. Let B ∈ ADDFp
r be a local algebra of a canonical additive CA and let k, l ∈ N.

Then, B[pk·l] ∼= B[l] × · · · × B[l]⏞ ⏟⏟ ⏞
pk×

.

Proof. We have:

B[pk·l] ∼=
(︁
B[pk])︁[l] by Lemma 26,

∼= (B × · · · × B⏞ ⏟⏟ ⏞
pk×

)[l] by Corollary 63,

∼= B[l] × · · · × B[l]⏞ ⏟⏟ ⏞
pk×

by Lemma 27.

This concludes the proof.

5.3 Characterizing the Simulation Capacity of Canonical Addi-
tive CAs

In this section, we prove Theorems 58 and 59 – the main results of this chapter. However, we
postpone the proofs of Propositions 81 and 84 until the next section. We first recall that both
sub-automata and quotient automata of additive CAs satisfying the bijective condition are
determined by subspaces invariant under all the CA’s local rule components. This is summarized
in the following proposition.

Proposition 65. Let B = (V, f)r be a local algebra of an additive CA satisfying the bijective
condition. Then:

(1) Let U ⊆ V and A = (U, f
⃓⃓
U2r+1)r. Then, A is a subalgebra of B if and only if U = x +W

where W ≤ V is a subspace invariant under all components of f and x ∈ V satisfies
f(x, . . . ,x) ∈ x +W .

(2) Let ∼ ⊆ V × V be a congruence on B. Then, there exists a subspace W ≤ V invariant
under all components of f such that for each x,y ∈ V we have: x ∼ y if and only if
x − y ∈ W . In fact, W = [0]∼. (Conversely, each such invariant subspace defines a
congruence on B in this way.)

Proof. Part (1) is essentially Lemma 44 from the previous chapter. Part (2) is implied by
Observation 47 and Lemma 48 from the previous chapter.

93

The relationship between a CA’s sub-automata (or quotient automata) and its invariant
subspaces motivates the following definition.

Definition 66. Let B = (V, f)r be a local algebra of an additive CA. We say that B is simple
if the only subspaces of V invariant under all components of f are the trivial subspaces {0}
and V .

Note that thanks to Proposition 65, for an additive automaton B satisfying the bijective
condition, the following three properties are equivalent:

• B is simple.

• B has no non-trivial sub-automata.

• B has no non-trivial quotient automata.

We have already shown that for a local algebra B that is canonical additive over Fp, each
iterative power B[pk·l] splits as B[l] × · · · × B[l]. In order to understand the sub-automata and
quotient automata of B[pk·l], we need to understand the invariant subspaces of B[l], p ∤ l, and
subsequently, the invariant subspaces of products of B[l]. In the next section, we will show that
if B is doubly bijective then B[l] is simple for each p ∤ l, as stated in Proposition 81. Now, we
characterize all invariant subspaces of products of simple local algebras and subsequently, we
combine this with Proposition 81 to prove Theorems 58 and 59.

Lemma 67. Let B1 = (U, f)r and B2 = (V, g)r be local algebras of CAs additive over Fp

that are both simple. Let B = B1 × B2 = (U × V, h)r and let W ≤ U × V be a non-trivial
subspace invariant under all components of h. Then, either W = {0} × V , W = U × {0}, or
W = {

(︁
u, ψ(u)

)︁
| u ∈ U} where ψ : U → V is an isomorphism of vector spaces which satisfies

ψ ◦ fi = gi ◦ ψ for all −r ≤ i ≤ r.

Proof. We distinguish the following cases:

a) There exists u ∈ U , u ̸= 0 such that (u,0) ∈ W . Since B1 is simple we get U × {0} ⊆ W .
Subsequently, since B2 is simple also, this implies either W = U × {0} or W = U × V .

b) There exists v ∈ V , v ̸= 0 such that (0,v) ∈ W . This is analogous to case a).

c) For each u ∈ U there exists at most one v ∈ V such that (u,v) ∈ W ; otherwise case
b) would apply. We define πU : U × V → U ; π

(︁
(u,v)

)︁
= u and analogously, we define

πV . Clearly, {0} ̸= πU (W) ≤ U is a subspace invariant under all components of f and
thus, πU (W) = U . Similarly, πV (W) = V . Thus, for each u ∈ U there exists exactly
one v ∈ V such that (u,v) ∈ W ; we put ψ(u) = v. Hence, we get a bijective mapping
ψ : U → V . Clearly, (u,v) ∈ W and (u′,v′) ∈ W gives (u + u′,v + v′) ∈ W and thus,
ψ(u + u′) = ψ(u)+ψ(u′). Similarly, since W is invariant under all components of h, we get
that if (u,v) ∈ W then

(︁
fi(u), gi(v)

)︁
∈ W for all −r ≤ i ≤ r. Thus, ψ

(︁
fi(u)

)︁
= gi

(︁
ψ(u)

)︁
for all u ∈ U and all −r ≤ i ≤ r. Hence, ψ : U → V is an isomorphism of vector spaces
which satisfies ψ ◦ fi = gi ◦ ψ for all −r ≤ i ≤ r.

Note that in the previous lemma, W of the last form can obviously only occur if B1 ∼= B2.

Proposition 68. Let B1,B2 ∈ ADDFp

r;i,j for some −r ≤ i < j ≤ r. Suppose that both B1 and
B2 are simple. Let A be one of the following:

(1) a subalgebra of B1 × B2,

(2) a quotient algebra of B1 × B2.

Then, A ∈ SINGr, A ∼= B1, A ∼= B2 or A ∼= B1 × B2.

94

Proof. We denote B1 = (U, f)r, B2 = (V, g)r and B1 × B2 = (U × V, h)r. Clearly, B1 × B2 ∈
ADDFp

r;i,j . We study the two cases separately.
(1) Proposition 65 (1) yields A =

(︂
x +W,h

⃓⃓
(x +W)2r+1

)︂
for some subspace W ≤ U × V

invariant under all components of h and for some x ∈ U × V satisfying h(x, . . . ,x) ∈ x +W .
In the light of Lemma 67, we distinguish the following cases. If W = {(0,0)} then clearly
A ∈ SINGr. If W = U × V then clearly A = B1 × B2.

We consider the case when W = {
(︁
u, ψ(u)

)︁
| u ∈ U} where ψ : U → V is an isomorphism

of vector spaces, or W = U × {0}. Then, clearly πU : A → B1 defined as πU

(︁
(u,v)

)︁
= u is a

surjective homomorphism of the algebras, and since the cardinalities match, it is an isomorphism.
(Note that we did not need the explicit knowledge that the underlying set of A has the form
x +W ; for this proof, it sufficed to know its cardinality and the fact that πU is surjective.)

The case when W = {0} × V is analogous to the previous one.
(2) We put B = B1 ×B2. Proposition 65 (2) gives us that W := [0]∼ ≤ U × V is a subspace

invariant under all components of h. Thanks to Lemma 67 it is enough to distinguish the
following cases. For W = {(0,0)} it holds that B

/︂
∼ ∼= B. Similarly, W = U × V implies

B
/︂

∼ ∈ SINGr. W = U × {0} implies B
/︂

∼ ∼= B2. Similarly, W = {0} ×V implies B
/︂

∼ ∼= B1.
We are left with the case when W = {

(︁
u, ψ(u)

)︁
| u ∈ U} where ψ : U → V is an isomorphism

of vector spaces. We define the mapping φ : B
/︂

∼ → B2 as follows: φ([(u,v)]∼) := v −ψ(u).
We check φ is well-defined and injective: Let (u,v), (u′,v′) ∈ U × V . Then:

(u,v) ∼ (u′,v′) ⇐⇒ (u − u′,v − v′) ∈ W

⇐⇒ v − v′ = ψ(u − u′)
⇐⇒ v −ψ(u) = v′ −ψ(u′)
⇐⇒ φ

(︁
[(u,v)]∼

)︁
= φ

(︁
[(u′,v′)]∼

)︁
.

It is straightforward to see that φ is surjective and thus an isomorphism of the algebras.
Therefore, B

/︂
∼ ∼= B2.

The previous proposition only analyses the product of two simple local algebras of CAs.
However, the results can be generalized in a quite straightforward way. We present the general
version below.

Lemma 69. Let k ∈ N and let Bi = (Vi, fi)r be a simple local algebra of a CA additive over Fp for
all 1 ≤ i ≤ k. Let B1×· · ·×Bk = (V1×· · ·×Vk, h)r. Let W ≤ V1×· · ·×Vk be a subspace invariant
under all components of h. Then, there exists a partition of indices I1, . . . , Il ⊆ {1, . . . , k},⋃︁
· l

j=1 Ij = {1, . . . , k}; Ij = {ij,1, . . . , ij,kj
} with the following property: For each j ∈ {1, . . . , l}

there exist isomorphisms ψj
2 : Vij,1 → Vij,2 , . . . , ψ

j
kj

: Vij,1 → Vij,kj
which commute with the

corresponding local rule components such that (after suitable reordering of the factors) W =
W1 × · · · ×Wl where for each j ∈ {1, . . . , l} we put Wj =

{︁(︁
v, ψj

2(v), . . . , ψj
kj

(v)
)︁

| v ∈ Vij,1

}︁
.

Proof. This is a slightly technical, yet straightforward generalization of Lemma 67.

Proposition 70. Let B1, . . . ,Bk ∈ ADDFp

r;i,j for some −r ≤ i < j ≤ r, all of them simple. Let
A be one of the following:

(1) a subalgebra of B1 × · · · × Bk,

(2) a quotient algebra of B1 × · · · × Bk.

Then, either A ∈ SINGr or there exist indices {i1, . . . il} ⊆ {1, . . . , k} such that A ∼= Bi1 ×· · ·×Bil
.

Proof. This is a generalization of Proposition 68 using Lemma 69.

95

Now we are ready to prove one of the main results of this chapter that considers the
simulation limitations of any doubly bijective canonical additive CA.

Theorem 58. Let B = (Fp, f)r be a doubly bijective local algebra of a canonical additive CA.
Then:

HSPfinΞ(B) = PfinΞ(B) ∪ SINGr.

Proof. Since B is doubly bijective, B ∈ ADDFp

r;i,j for some −r ≤ i < j ≤ r. Let A ∈ PfinΞ(B).
Corollary 64 gives us that

A ∼= B[l1] × · · · × B[lm]

where the exponents l1, . . . , lm are coprime with p (and not necessarily pairwise distinct).
Proposition 81 that we prove in the next section gives us that each algebra B[li], 1 ≤ i ≤ m,
is simple. Further, Corollary 40 yields that B[n] ∈ ADDFp

r;i,j for each n ∈ N. Thus, all the
assumptions for Proposition 70 are met. Hence, Proposition 70 (1) gives that if A′ ∈ S(A)
then A′ ∈ PfinΞ(B) or A′ ∈ SINGr. Similarly, Proposition 70 (2) gives that if A′′ ∈ H(A′) then
A′′ ∈ PfinΞ(B) or A′′ ∈ SINGr. Thus, HSPfinΞ(B) = PfinΞ(B) ∪ SINGr.

This concludes the characterization of the simulation capacity of any canonical additive
CA that is doubly bijective. Let us now focus on the canonical additive CAs with radius
r = 1. Let B = (Fp, f)1 be given by (a−1, a0, a1) ∈ F3

p. As already mentioned, if at most one
of the coefficients is non-zero, analysing HSPfinΞ(B) is straightforward. If at least two of the
coefficients in (a−1, a0, a1) are non-zero, we distinguish the following two cases:

1. a0 ̸= 0. Then, B is doubly bijective and Theorem 58 applies.

2. a0 = 0. This is the case we analyse below.

Lemma 71. Let B = (Fp, f)1 be a local algebra with f(x, y, z) = ax + bz. Let B′ = (Fp, f
′)1

where f ′(x, y, z) = a2x+ 2aby + b2z. Then, B[2] ∼= B′ × B′.

Proof. Let x,y, z ∈ F2
p; x = x1x2,y = y1y2, z = z1z2. By definition

f [2](x,y, z) = ˜︁f2(x1, x2, y1, y2, z1, z2) = ˜︁f(ax1 + by1, ax2 + by2, ay1 + bz1, ay2 + bz2)
= a2x1 + 2aby1 + b2z1, a

2x2 + 2aby2 + b2z2 = a2 x +2aby +b2 z .

Above, for clarity, we separate the elements of the sequences u ∈ Fk
p, k ≥ 1 by a comma. This

shows that f [2] indeed acts as “two independent copies of f”.

Note that in Lemma 71 it is useful to distinguish two cases. For p ̸= 2, B′ is a doubly
bijective local algebra; moreover, it is clearly not isomorphic to B as the “middle coefficient” is
non-zero. For p = 2, B′ = B. (Over F2 there is only one algebra satisfying the assumptions,
namely B = (F2, f)1 with f(x, y, z) = x + z; this corresponds to ECA 90.) This distinction
plays a role in the following proof as well.

Theorem 59. Let B = (Fp, f)1 be a local algebra of a canonical additive CA with f(x, y, z) =
ax+ bz; a, b ̸= 0. Let B′ = (Fp, f

′)1 where f ′(x, y, z) = a2x+ 2aby + b2z. Then:

HSPfinΞ(B) = PfinΞ({B,B′}) ∪ SINGr.

Proof. First assume p ̸= 2. By Lemma 71, B[2] ∼= B′ × B′, and consequently, B[2l] ∼= B′[l] × B′[l]

for any l ∈ N. Let A ∈ PfinΞ(B). Corollary 64 gives us

A ∼= B[l1] × · · · × B[lm] × B[2l′1] × · · · × B[2l′
m′]

∼= B[l1] × · · · × B[lm] × (B′[l′1] × B′[l′1]) × · · · × (B′[l′
m′] × B′[l′

m′])

96

where all the exponents li, l′i are coprime with p (and not necessarily pairwise distinct) and
all the li are odd. Since p ̸= 2, we know that B′ is a doubly bijective local algebra. Hence, by
Proposition 81, for any l′ ∈ N, p ∤ l′, B′[l′] is simple. Further, B satisfies the assumptions of
Proposition 84 and thus, for any l ∈ N odd, p ∤ l, B[l] is simple. (Note that Propositions 81 and
84 are proven in the next section.)

If p = 2, for A ∈ PfinΞ(B) it holds that A ∼= B[l1] × · · · × B[lm] where all the exponents li
are odd. Thus, we can directly apply Proposition 84 to obtain that each B[li] is a simple local
algebra.

Thus, in either case, A is isomorphic to a product of simple local algebras, all belonging to
ADDFp

1;−1,1. Hence, all the assumptions for Proposition 70 are met. Let A′ ∈ S(A). Proposition
70 (1) gives that A′ ∈ PfinΞ({B,B′}) and is again a product of simple local algebras belonging
to ADDFp

1;−1,1 or A ∈ SINGr. Similarly, Proposition 70 (2) gives that if A′′ ∈ H(A′) then
A′′ ∈ PfinΞ({B,B′}) or A′′ ∈ SINGr. Thus, HSPfinΞ(B) = PfinΞ({B,B′}) ∪ SINGr.

With this, we finish the analysis of the simulation capacity of all ternary canonical additive
CAs, proving Corollary 60.

5.4 Invariant Subspaces of Iterated Powers

Let us fix a canonical additive CA with local algebra B = (Fp, f)r given by (a−r, . . . , ar) and
let F denote its global rule. The goal of this section is to understand subspaces W ≤ Fl

p

invariant under all components of f [l] for p ∤ l. To achieve this, we first describe some elementary
properties of the components of f [l].

5.4.1 Components of CA Iterated Powers

In this subsection, we will study the general form of the components f [n]
−r , . . . , f

[n]
r for n ∈ N.

It will be useful to view the components f [n]
i : Fn

p → Fn
p in their matrix form. Thus, we first

introduce some notation.

Definition 72. Let n ∈ N and let p be a prime. We will denote the canonical basis of Fn
p by

K = (e1, . . . , en). Let (Fp, f)r be the local algebra of some canonical additive CA. We will
denote the matrix corresponding to f [n]

i with respect to K as Ai,n ∈ Fn×n
p for each −r ≤ i ≤ r.

In what follows, we will show that the matrices Ai,n, −r ≤ i ≤ r, have a very special form
and are fully determined by the configuration Fn(· · · 00100 · · ·). To illustrate this, we first show
two simple examples.

Example 73. Let A = (Fp, f)r be the local algebra of an additive CA given by (a−r, . . . , ar)
and let n = pk for some k ∈ N. Then Lemma 62 gives us that for each −r ≤ i ≤ r,
Ai,n = ai · I ∈ Fn×n

p .

Definition 74. For a finite set of states S, we define the shift map σ : SZ → SZ as: σ(c)i = ci+1
for each c ∈ SZ and each i ∈ Z. We define the reflection map ρ : SZ → SZ as: ρ(c)i = c−i for
each c ∈ SZ and each i ∈ Z. And for each c ∈ SZ and each i ≤ j, by c[i,j] we understand the
sequence cici+1 · · · cj . Lastly, for each k ∈ Z, ek ∈ FZ

p denotes the k-th “canonical” configuration:
ek

i = δk,i.

Example 75 (Components of additive CAs have a special form). Let A = (F3, f)1 be the local
algebra of an additive CA given by (2, 1, 1). Let F denote the CA’s global rule. We compute
F 4(e0) in Figure 5.1.

Suppose we would like to find out what is the first column of the matrix A0,4. It is
straightforward that this is equal to A0,4 · e1 = f

[4]
0 (e1) = f [4](0, e1,0) = F 4(e0)[0,3]. This

97

0 0 0 0 0 0 0 0 0 0 0 0 0 0· · · · · ·1e0 =
0 0 0 0 0 0 0 0 0 0 0 01 1 2· · · · · ·F (e0) =
0 0 0 0 0 0 0 0 0 01 2 2 1 1· · · · · ·F 2(e0) =
0 0 0 0 0 0 0 01 0 0 1 0 0 2· · · · · ·F 3(e0) =
0 0 0 0 0 01 1 2 1 1 2 2 2 1· · · · · ·F 4(e0) =

Figure 5.1: The scheme shows the computation of F 4(e0).

corresponds to the subsequence 1, 2, 2, 2 in the bottom line of Figure 5.1. In a similar fashion,
all columns of all the matrices A−1,4, A0,4, A1,4 can be obtained from the configuration F 4(e0).
The form of the matrices is shown in Figure 5.2.

Figure 5.2: The scheme illustrates that the first row of the matrix (A−1,4|A0,4|A1,4) contains
the “non-zero part” of the reflected configuration ρ

(︁
F 4(e0)

)︁
. Further, each subsequent row of

(A−1,4|A0,4|A1,4) is simply obtained by shifting the previous row.

Definition 76. Let F be a field. We denote by Jn ∈ Fn×n the matrix with a single “shifted”
diagonal of 1’s; [Jn]i,j = 1 if j = i+ 1 and [Jn]i,j = 0 otherwise. This is illustrated in Figure 5.3.

It is straightforward to check that for 1 ≤ k ≤ n− 1, [Jk
n]i,j = 1 if j = i+ k and [Jk

n]i,j = 0
otherwise. Also, that Jn

n is the zero matrix. Lastly, analogous properties hold for JT
n , as

illustrated in Figure 5.3.

Figure 5.3: Illustration of Jn, its power and its transpose.

In Example 75, we have seen that the matrices A−1,4, A0,4, A1,4 have a very special form
and are fully determined by the configuration F 4(e0). Lemma 77 and Figure 5.4 show that this
is the case in general.

Lemma 77. Let B = (Fp, f)r be the local algebra of a canonical additive CA with global rule F .
Denote c = Fn(e0). Then, for each −r ≤ i ≤ r it holds that

Ai,n = c−inI +
n−1∑︂
k=1

c−in−kJ
k
n +

n−1∑︂
k=1

c−in+k(JT
n)k

. (5.1)

This is illustrated in Figure 5.4.

98

0 0 0 0 0 0 0 0 0 0 0 0 0 0· · · · · ·1e0 =
0 0 0 0 0 0 0 0 0 0∗ ∗ ∗· · · · · ·· · · · · ·F (e0) =
0 0 0 0 0 0∗ ∗ ∗ ∗ ∗ ∗ ∗· · · · · ·· · · · · ·F 2(e0) =

2r 2r
...

0 0c−nr · · · · · · · · · c−2 c−1 c0 c1 c2 · · · · · ·· · · cnr· · · · · ·F n(e0) =

Figure 5.4: The diagram illustrates that the first row of the matrix (A−r,n| · · · |Ar,n) contains
exactly the “non-zero part” of the reflected configuration ρ

(︁
Fn(e0)

)︁
; and, each subsequent row

is obtained by shifting the previous row by one cell “to the right”.

Proof. Let −r ≤ i ≤ r and 1 ≤ j ≤ n. In order to prove the statement, it suffices to show
that Ai,n · ej = (c−in−j+1, . . . , c−in−j+n)T. And this is indeed the case, since directly by the
definitions we have

Ai,n ·ej = f [n](0, . . . ,0, ej ,0, . . . ,0) =
(︁
Fn(e0)[−in−j+1,−in−j+n]

)︁T = (c−in−j+1, . . . , c−in−j+n)T

where ej is on the i-th position in the input of f [n] above.

In what follows, we will study the subspaces W ≤ Fn
p invariant under all the components f [n]

i ,
−r ≤ i ≤ r. For that, we need more information about the matrices Ai,n. It seems challenging
to fully describe such matrices for arbitrarily large n. However, Lemma 78 shows that if
B ∈ ADDFp

r;i,j , then we can easily describe the form of the CA’s “outer components” represented
by the matrices Ai,n and Aj,n. For the case of doubly bijective CAs, this information will
already be enough to conclude that for p ∤ n there are no non-trivial subspaces of Fn

p invariant
under both f

[n]
i and f

[n]
j and thus, that B[n] is simple.

Lemma 78. Let B = (Fp, f)r be the local algebra of an additive CA given by (a−r, . . . , ar)
such that B ∈ ADDFp

r;i,j for some −r ≤ i < j ≤ r. Then, for each n ∈ N it holds that
A−r,n = · · · = Ai−1,n are zero matrices and Aj+1,n = · · · = Ar,n as well. In addition, it holds
that:

Ai,n = an
i · I + nan−1

i ai+1 · Jn +
(︄
nan−1

i ai+2 +
(︄
n

2

)︄
an−2

i a2
i+1

)︄
· J2

n +
n−1∑︂
k=3

bk · Jk
n (5.2)

Aj,n = an
j · I + nan−1

j aj−1 · JT
n +

(︄
nan−1

j aj−2 +
(︄
n

2

)︄
an−2

j a2
j−1

)︄
· (JT

n)2 +
n−1∑︂
k=3

b′
k · (JT

n)k (5.3)

for some bk, b
′
k ∈ Fp, 3 ≤ k ≤ n− 1 where all the coefficients are computed in Fp and where

(︁1
2
)︁

is to be interpreted as 0.

Proof. We show the proof for matrix Ai,n as the case for Aj,n is analogous. Denote c(n) := Fn(e0)
for each n ∈ N. By induction on n, we will show that c(n)m = 0 for m ≥ −in+ 1. Thanks to
Lemma 77 this already implies that A−r,n = · · · = Ai−1,n is the zero matrix and that Ai,n is
upper triangular. Further, we show by induction on n that c(n)−in = an

i , c(n)−in−1 = nan−1
i ai+1

99

and c(n)−in−2 = nan−1
i ai+2 +

(︁n
2
)︁
an−2

i a2
i+1. Again, by Lemma 77, this will imply that Ai,n has

the form in (5.2).
It is straightforward to verify that the claims hold for n = 1. Let n ≥ 2 and suppose the

induction hypotheses hold for n− 1, we show they hold for n. Let us denote c = c(n− 1) and
c′ = c(n).

We first show that c′
m = 0 for m ≥ −in + 1: Let k ∈ {−in + 1, . . . , nr}. Then, c′

k =
f(ck−r, . . . , ck+r) = ∑︁r

l=−r alck+l. Here, each summand is zero either because k+l ≥ −i(n−1)+1
and ck+l = 0 or because k+ l < −i(n− 1) + 1, which implies that l < i and in such case, al = 0.

Next, we deduce the form of c′
−in, c

′
−in−1, c

′
−in−2: By the induction hypothesis, we have

c−(n−1)i = an−1
i , c−(n−1)i−1 = (n−1)an−2

i ai+1, and c−i(n−1)−2 = (n−1)an−2
i ai+2+

(︁n−1
2
)︁
an−3

i a2
i+1.

Then,

c′
−ni = f(c−ni−r, . . . , c−ni+r)

= a−rc−ni−r + · · · + ai−1c−ni+i−1 + aic−ni+i + ai+1c−ni+i+1 + · · · + arc−ni+r

= 0c−ni−r + · · · + 0c−ni+i−1 + aic−ni+i + ai+10 + · · · + ar0 = aia
n−1
i = an

i .

Similarly:

c′
−ni−1 = f(c−ni−r−1, . . . , c−ni+r−1)

= a−rc−ni−r−1 + · · · + ai−1c−ni+i−2 + aic−ni+i−1 + ai+1c−ni+i + · · · + arc−ni+r−1

= 0c−ni−r + · · · + 0c−ni+i−2 + aic−ni+i−1 + ai+1c−ni+i + ai+20 + · · · + ar0
= ai(n− 1)an−2

i ai+1 + ai+1a
n−1
i = nan−1

i ai+1.

And finally:

c′
−ni−2 = f(c−ni−r−2, . . . , c−ni+r−2)

= a−rc−ni−r−2 + · · · + ai−1c−ni+i−3 + aic−ni+i−2 + ai+1c−ni+i−1 + · · · + arc−ni+r−2

= 0c−ni−r + · · · + 0c−ni+i−2 + aic−ni+i−2 + ai+1c−ni+i−1 + ai+2c−ni+i + · · · + ar0

= ai

(︄
(n− 1)an−2

i ai+2 +
(︄
n− 1

2

)︄
an−3

i a2
i+1

)︄
+ ai+1

(︂
(n− 1)an−2

i ai+1
)︂

+ ai+2a
n−1
i

= (n− 1)an−1
i ai+2 +

(︄
n− 1

2

)︄
an−2

i a2
i+1 + (n− 1)an−2

i a2
i+1 + an−1

i ai+2

= nan−1
i ai+2 +

(︄
n

2

)︄
an−2

i a2
i+1.

Corollary 79. Let B = (Fp, f)r be the local algebra of a CA; B ∈ ADDFp

r;i,j. Let B be given by
(a−r, . . . , ar). Then, for each n ∈ N, Ai,n is upper triangular with an

i on the diagonal and Aj,n

is lower triangular with an
j on the diagonal. Therefore, Ai,n and Aj,n are regular. In particular,

this implies that for each n, B[n] ∈ ADDFp

r;i,j.

Lemma 78 gives us even stronger consequences. In particular, for B = (Fp, f)r ∈ ADDFp

r;i,j
we will use it in the next subsection to show that, under certain assumptions, there is no
non-trivial subspace of Fn

p invariant under both f
[n]
i and f

[n]
j for p ∤ n.

5.4.2 Analysing Invariant Subspaces of CA Iterated Powers

Let us fix a local algebra B = (Fp, f)r of a canonical additive CA. In this subsection, we shall
study two cases in which we are able to prove that B[n], p ∤ n, is a simple local algebra. First,
we study the case when B is doubly bijective. We start by proving a useful lemma.

100

Lemma 80. Let p be a prime, n ∈ N, and let V over Fp of dimension n. Let fL, fR : V → V
be linear mappings which satisfy the following: There exists a basis (b1,b2, . . . ,bn) of V such
that

⟨b1, . . . ,bn⟩ fL−→→ ⟨b1, . . . ,bn−1⟩ fL−→→ · · · fL−→→ ⟨b1,b2⟩ fL−→→ ⟨b1⟩ fL−→→ {0},

⟨b1, . . . ,bn⟩ fR−→→ ⟨b2, . . . ,bn⟩ fR−→→ · · · fR−→→ ⟨bn−1,bn⟩ fR−→→ ⟨bn⟩ fR−→→ {0}

where →→ denotes surjectivity and ⟨·⟩ denotes the linear span. Then, the only subspaces of V
invariant under both fL and fR are {0} and V .

Proof. Let {0} ̸= W ≤ V be a subspace invariant under both fL and fR and let 0 ̸= w ∈ W .
Since fL is nilpotent, there must exist some 1 ≤ k ≤ n such that fk

L(w) = 0 and fk−1
L (w) ̸= 0

(we assert that f0
L(w) = w). Thus, fk−1

L (w) ∈ Ker (fL) = ⟨b1⟩ and hence, b1 ∈ W . An
analogous argument for fR yields bn ∈ W .

Next, let 1 < i ≤ n. Since fL (⟨b1, . . . ,bi⟩) = ⟨b1, . . . ,bi−1⟩ and fL (⟨b1, . . . ,bi−1⟩) =
⟨b1, . . . ,bi−2⟩, we have that fL(bi) = c · bi−1 + v for some c ̸= 0 and some v ∈ ⟨b1, . . . ,bi−2⟩.
Iterating this argument gives fn−i

L (bn) = c · bi + v ∈ W for some c ̸= 0 and some v ∈
⟨b1, . . . ,bi−1⟩.

Recall that b1,bn ∈ W . Let 1 < i < n and suppose that b1, . . .bi−1 ∈ W . We show
that bi ∈ W . (Then the proof will be immediately finished by induction.) We have that
fn−i

L (bn) = c · bi + v ∈ W for some c ̸= 0 and some v ∈ ⟨b1, . . . ,bi−1⟩. The induction
hypothesis gives that v ∈ W and thus, bi ∈ W . Hence, W = V .

Proposition 81. Let B = (Fp, f)r be the local algebra of a canonical additive CA that is doubly
bijective. Let n ∈ N such that p ∤ n. Then, B[n] is simple.

Proof. Let B be given by (a−r, . . . , ar); B ∈ ADDFp

r;i,j . In fact, we will show that if W ≤ Fn
p is

invariant under both Ai,n and Aj,n, it implies that either W = {0} or W = Fn
p . From Lemma

78, we have that Ai,n is upper triangular, Ai,n = b · I + b1 · Jn +∑︁n−1
k=2 bk · Jk

n where b = an
i ̸= 0

and b1 = nan−1
i ai+1p ̸= 0 (where the coefficients are computed, of course, modulo p). Similarly,

we have that Aj,n is lower triangular, Aj,n = b′ · I + b′
1 · JT

n +∑︁n−1
k=2 b

′
k · (JT

n)k where b′ = an
j ̸= 0

and b′
1 = nan−1

j aj−1 ̸= 0.
Let g : Fn

p → Fn
p be an arbitrary linear mapping and c, d ∈ Fp, c ̸= 0, arbitrary constants.

We observe that W ≤ Fn
p is invariant under g if and only if it is invariant under c(g − d id).

Thus, we consider mappings fL := f
[n]
i − b id, fR := f

[n]
j − b′ id, and show that there are no

non-trivial subspaces invariant under both fL and fR. The mappings have the following form
with respect to the canonical basis:

[fL]K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 ∗ · · · ∗ ∗
0 0 1 · · · ∗ ∗
0 0 0 · · · ∗ ∗
...

...
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and [fR]K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
1 0 0 · · · 0 0
∗ 1 0 · · · 0 0
...

...
...

...
∗ ∗ ∗ · · · 0 0
∗ ∗ ∗ · · · 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is now easy to see that the maps fL, fR satisfy the assumptions of Lemma 80 where the
witnessing basis is the canonical one. Therefore, the only subspaces of Fn

p invariant under both
fL and fR are indeed the trivial ones. Hence, B[n] is simple.

We finish this section by analysing invariant spaces of iterated powers of CAs with radius
r = 1 given by (a−1, 0, a1). We first state a general lemma that we subsequently use to show
that in such a case, B[n] is simple for any n ∈ N odd, p ∤ n.

101

Lemma 82. Let p be a prime, n ∈ N odd, and let V a vector space over Fp of dimension
n. Let fL, fR : V → V be linear mappings which satisfy the following: There exists a basis
(b1,b2, . . . ,bn) of V such that:

⟨b1,b3, . . . ,bn⟩ fL−→→ ⟨b1,b3, . . . ,bn−2⟩ fL−→→ · · · fL−→→ ⟨b1,b3⟩ fL−→→ ⟨b1⟩ fL−→→ {0},

⟨b2,b4, . . . ,bn−1⟩ fL−→→ ⟨b2,b4, . . . ,bn−3⟩ fL−→→ · · · fL−→→ ⟨b2,b4⟩ fL−→→ ⟨b2⟩ fL−→→ {0},

and

⟨b1,b3, . . . ,bn⟩ fR−→→ ⟨b3, . . . ,bn−2,bn⟩ fR−→→ · · · fR−→→ ⟨bn−2,bn⟩ fR−→→ ⟨bn⟩ fR−→→ {0},

⟨b2,b4, . . . ,bn−1⟩ fR−→→ ⟨b4, . . . ,bn−3,bn−1⟩ fR−→→ · · · fR−→→ ⟨bn−3,bn−1⟩ fR−→→ ⟨bn−1⟩ fR−→→ {0}

where →→ denotes surjectivity and ⟨·⟩ denotes the linear span.
We define the subspaces Vodd = ⟨{bi | i odd}⟩ ≤ V and Veven = ⟨{bi | i even}⟩ ≤ V . Let

W ≤ V be a non-trivial subspace invariant under both fL and fR. Then either W = Vodd or
W = Veven.

Proof. a) Let {0} ≠ W ≤ Vodd be a subspace invariant under both fL and fR. The mappings
fL

⃓⃓
Vodd

and fR

⃓⃓
Vodd

satisfy the assumptions of Lemma 80 and thus, we have W = Vodd.
Analogously, we obtain that if {0} ≠ W ≤ Veven is a subspace invariant under both fL

and fR then W = Veven.

b) We have that V = Vodd ⊕ Veven and we denote by πodd : V → Vodd and πeven : V → Veven
the corresponding projections. We show that πodd ◦ fL = fL ◦ πodd.
Let u ∈ Vodd and v ∈ Veven. Then πodd (fL(u + v)) = πodd (fL(u) + fL(v)) = fL(u) =
fL (πodd(u + v)). Analogously, one can verify that πodd ◦ fR = fR ◦ πodd, πeven ◦ fL =
fL ◦ πeven, and πeven ◦ fR = fR ◦ πeven.

c) Let {0} ̸= W ≤ V be invariant under both fL and fR. If πeven(W) = {0} then clearly,
W ≤ Vodd and from a) we know that W = Vodd. Analogously, πodd(W) = {0} implies
that W = Veven. Hence, let us assume that πodd(W) ̸= {0} ≤ Vodd and πeven(W) ̸=
{0} ≤ Veven. Since the operators πodd, πeven commute with the operators fL, fR, we have
that fL

(︁
πodd(W)

)︁
= πodd

(︁
fL(W)

)︁
⊆ πodd(W) and similarly fR

(︁
πodd(W)

)︁
⊆ πodd(W).

Hence, πodd(W) ≤ Vodd is invariant under both fL and fR and thus, by a) we have
πodd(W) = Vodd. Analogously, we obtain that πeven(W) = Veven.
Since n is odd, |Vodd| > |Veven| and there exist u ∈ Vodd and v,v′ ∈ Veven, v ̸= v′, such that
u + v ∈ W and u + v′ ∈ W . Then, v − v′ ∈ W and we have that {0} ≠ W ∩Veven ≤ Veven
is a subspace invariant under both fL and fR. Thus, from a) we have that Veven ≤ W
and consequently, W = Vodd + Veven = V .

This finishes the proof of one of the most important results of this section, already outlined
in Proposition 57 (3).

Lemma 83. Let B = (Fp, f)1 be the local algebra of a canonical additive CA where f(x, y, z) =
a−1x+ a1z. Then, for each n ∈ N odd it holds that Fn(e0)i = 0 for each i even. Further, for
each n ∈ N even it holds that Fn(e0)i = 0 for each i odd.

Proof. This is clear, as in the computation of odd positions of F (c) for any configuration c one
only uses even positions of c and vice versa.

102

Proposition 84. Let B = (Fp, f)1 be the local algebra of a canonical additive CA where
f(x, y, z) = a−1x+ a1z with a−1, a1 ̸= 0. Let n ∈ N be odd such that p ∤ n. Then, B[n] is simple.

Proof. We will show that, after certain transformations that preserve the set of invariant
subspaces, the mappings f [n]

−1 and f [n]
1 satisfy the assumptions of Lemma 82 with the witnessing

basis being the canonical (e1, . . . , en). This will yield that the only possible non-trivial subspaces
of Fn

p invariant under both f
[n]
−1 and f

[n]
1 are the spaces Vodd = ⟨{ei | i odd}⟩ ≤ V and Veven =

⟨{ei | i even}⟩ ≤ V . We will finish the proof by showing that neither Vodd nor Veven is invariant
under f [n]

0 .
Denote c = Fn(e0). Lemma 83 gives us that ci = 0 whenever i is even. Lemma 77 thus

gives us that the matrices A−1,n, A0,n, A1,n have the following form:

A−1,n

=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0

...
0
0
cn

0
0

...
0
cn

0

0
0

...
cn

0
cn−2

· · ·
· · ·

. . .
· · ·
· · ·
· · ·

0
cn

...
0
c3

0

cn

0

...
c3

0
c1
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

A0,n

=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

cn−2

...
0
c1

0

cn−2

0

...
c1

0
c−1

· · ·
· · ·

. . .
· · ·
· · ·
· · ·

c1

0

...
0
0

c−(n−2)

0
c−1

...
0

c−(n−2)

0
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

A1,n

=⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
c−1

0

...
c−(n−2)

0
c−n

0
c−3

...
0
c−n

0

c−3

0

...
c−n

0
0

· · ·
· · ·

. . .
· · ·
· · ·
· · ·

0
c−n

...
0
0
0

c−n

0

...
0
0
0
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.4)

We can see that the matrices A−1,n and A1,n have zeroes on “odd diagonals” and A0,n has
zeroes on “even diagonals”. Moreover, Lemma 78 gives that cn = an

−1 ̸= 0 and cn−2 =(︂
nan−1

−1 a1 +
(︁n

2
)︁
an−2

−1 a2
0

)︂
= nan−1

−1 a1 ̸= 0 (where the coefficients are computed, of course, modulo
p). Similarly, c−n = an

1 ̸= 0 and c−(n−2) = nan−1
1 a0 ̸= 0.

Let g : Fn
p → Fn

p be an arbitrary linear mapping and c, d ∈ Fp, c ̸= 0, arbitrary constants.
Again, we observe that W ≤ Fn

p is invariant under g if and only if it is invariant under c(g−d id).
We put fL := f

[n]
−1 − cn id and fR := f

[n]
1 − c−n id. Now, it is easy to see that the maps fL,

fR satisfy the assumptions of Lemma 82 where the witnessing basis is the canonical basis
(e1, . . . , en). Therefore, the only subspaces of Fn

p invariant under both fL and fR are Veven and
Vodd.

We finish the proof by showing that neither Vodd nor Veven is invariant under f [n]
0 . We

know that A0,n has the form in (5.4) and that cn−2 ̸= 0. Hence, f [n]
0 (e1) = c1 e2 +c3 e4 + · · · +

cn−2 en−1 /∈ Vodd. Similarly, f [n]
0 (e2) = c−1 e1 +c1 e3 + · · · + cn−2 en /∈ Veven. This finishes the

proof that B[n] is simple.

5.5 Concluding Remarks

Again, the proofs in this chapter do not require the understanding of any deeper algebraic
theorems. However, we again highlight a connection to some well-established results from
universal algebra with the following example. It is a well-known result that for a congruence-
permutable algebra that is a subdirect product of finitely many simple algebras, it holds that
the algebra is isomorphic to a direct product of their subset (proof can be found e.g., in [124,
Theorem 2.4.7]. Since any local algebra of a canonical additive CA satisfying the bijective
condition is congruence-permutable, Proposition 70 (1) is a direct consequence of this result.

103

Bibliography
[1] Jürgen Albert and Karel Culik II. A simple universal cellular automaton and its one-way

and totalistic version. Complex Systems, 1:1–16, 1987.

[2] Maximino Aldana, Susan Coppersmith, and Leo P Kadanoff. Boolean dynamics with
random couplings. Perspectives and Problems in Nolinear Science: A Celebratory Volume
in Honor of Lawrence Sirovich, pages 23–89, 2003.

[3] Jean-Paul Allouche, Friedrich von Haeseler, Heinz-Otto Peitgen, and Gencho Skordev. Lin-
ear cellular automata, finite automata and pascal’s triangle. Discrete Applied Mathematics,
66(1):1–22, 1996.

[4] F Altarelli, A Braunstein, L Dall’Asta, and R Zecchina. Optimizing spread dynamics on
graphs by message passing. Journal of Statistical Mechanics: Theory and Experiment,
2013(09):P09011, sep 2013.

[5] Erik Aurell and Hamed Mahmoudi. Dynamic mean-field and cavity methods for diluted
Ising systems. Physical Review E, page 12, 2012.

[6] Robert Axelrod. The dissemination of culture: A model with local convergence and global
polarization. Journal of conflict resolution, 41(2):203–226, 1997.

[7] Franco Bagnoli and Raul Rechtman. Phase Transitions of Cellular Automata. arxiv, 2014.

[8] Per Bak, Kan Chen, and Michael Creutz. Self-organized criticality in the’game of life.
Nature, 342(6251):780–782, 1989.

[9] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality: An explanation of
the 1/f noise. Physical review letters, 59(4):381, 1987.

[10] Stefania Bandini, Giancarlo Mauri, and Roberto Serra. Cellular automata: From a
theoretical parallel computational model to its application to complex systems. Parallel
Computing, 27(5):539–553, 2001.

[11] Thomas Barthel. Matrix product algorithm for stochastic dynamics on networks applied
to nonequilibrium Glauber dynamics. Physial Review E, page 6, 2018.

[12] John E. Bates and Harvey K. Shepard. Measuring complexity using information fluctuation.
Physics Letters A, 172(6):416–425, 1993.

[13] C. Bédard, H. Kröger, and A. Destexhe. Does the 1/f frequency scaling of brain signals
reflect self-organized critical states? Phys. Rev. Lett., 97:118102, Sep 2006.

[14] Freya Behrens, Gabriel Arpino, Yaroslav Kivva, and Lenka Zdeborová. (Dis)assortative
Partitions on Random Regular Graphs. Journal of Physics A: Mathematical and Theoret-
ical, 55(39):395004, 2022.

[15] Freya Behrens, Barbora Hudcová, and Lenka Zdeborová. The backtracking dynamical
cavity method. Phys. Rev. X, 13, Aug 2023.

[16] Freya Behrens, Barbora Hudcová, and Lenka Zdeborová. Dynamical phase transitions in
graph cellular automata, 2023.

[17] Clifford Bergman. Universal Algebra, Fundamentals and Selected Topics. CRC Press,
2011.

104

[18] Elwyn R Berlekamp, John H Conway, and Richard K Guy. Winning ways for your
mathematical plays, volume 2. AK Peters/CRC Press, 2004.

[19] Amartya Bhattacharjya and Shoudan Liang. Median attractor and transients in random
boolean nets. Physica D: Nonlinear Phenomena, 95(1):29–34, 1996.

[20] Sydney Brenner. Life’s code script. Nature, 482(7386):461–461, 2012.

[21] Ana Busic, Nazim Fates, Jean Mairesse, and Irene Marcovici. Density Classification on
Infinite Lattices and Trees. LATIN 2012: Theoretical Informatics, page 12, 2012.

[22] Mathieu S Capcarrere, Moshe Sipper, and Marco Tomassini. Two-state, r= 1 cellular
automaton that classifies density. Physical review letters, 77(24):4969, 1996.

[23] Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical physics of social
dynamics. Reviews of modern physics, 81(2):591, 2009.

[24] Alastair Channon. Unbounded evolutionary dynamics in a system of agents that actively
process and transform their environment. Genetic Programming and Evolvable Machines,
7:253–281, 09 2006.

[25] Hugo Cisneros, Tomas Mikolov, and Josef Sivic. Benchmarking learning efficiency in deep
reservoir computing. In Conference on Lifelong Learning Agents, pages 532–547. PMLR,
2022.

[26] Hugo Cisneros, Josef Sivic, and Tomas Mikolov. Evolving structures in complex systems.
Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence, pages
230–238, 2019.

[27] Matthew Cook et al. Universality in elementary cellular automata. Complex systems,
15(1):1–40, 2004.

[28] James P. Crutchfield and James E. Hanson. Turbulent pattern bases for cellular automata.
Physica D: Nonlinear Phenomena, 69(3):279 – 301, 1993.

[29] Karel Culik II and Shuangni Yu. Yu, s.: Undecidability of ca classification schemes.
complex systems 2, 177-190. Complex Systems, 2, 01 1988.

[30] Michael Damron and Arnab Sen. Zero-temperature Glauber dynamics on the 3-regular
tree and the median process. Probability Theory and Related Fields, 178(1):25–68, 2020.

[31] Yatin Dandi, David Gamarnik, and Lenka Zdeborová. Maximally-stable local optima
in random graphs and spin glasses: Phase transitions and universality. arXiv preprint
arXiv:2305.03591, 2023.

[32] Rajarshi Das, James P. Crutchfield, Melanie Mitchell, and James E. Hanson. Evolving
globally synchronized cellular automata. In Proceedings of the 6th International Conference
on Genetic Algorithms, page 336–343, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

[33] Gino Del Ferraro and Erik Aurell. Dynamic message-passing approach for kinetic spin
models with reversible dynamics. Physical Review E, 92(1):010102, 2015.

[34] Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, and Guillaume Theyssier. Bulking
i: an abstract theory of bulking. Theoretical Computer Science, 412(30):3866–3880, 2011.

105

[35] Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, and Guillaume Theyssier. Bulking
ii: Classifications of cellular automata. Theoretical Computer Science, 412(30):3881–3905,
2011.

[36] Jean-Charles Delvenne, Petr Kůrka, and Vincent Blondel. Decidability and universality
in symbolic dynamical systems. Fundamenta Informaticae, 74(4):463–490, 2006.

[37] B. Derrida and H. Flyvbjerg. The random map model: A disordered model with deter-
ministic dynamics. Journal De Physique, 48:971–978, 1987.

[38] B. Derrida and Y. Pomeau. Random networks of automata: A simple annealed approxi-
mation. Europhys. Lett., 1:45–49, Jan 1986.

[39] Bruno Durand and Zsuzsanna Róka. The game of life: universality revisited. Cellular
Automata: a Parallel Model, pages 51–74, 1999.

[40] Jérôme Olivier Durand-Lose. Intrinsic universality of a 1-dimensional reversible cellular
automaton. In Rüdiger Reischuk and Michel Morvan, editors, STACS 97, pages 439–450,
Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[41] Jérôme Olivier Durand-Lose. Reversible space–time simulation of cellular automata.
Theoretical computer science, 246(1-2):117–129, 2000.

[42] Samuel Eilenberg and Marcel-Paul Schützenberger. On pseudovarieties. Advances in
Mathematics, 19(3):413–418, 1976.

[43] H. Flyvbjerg and N. J. Kjaer. Exact solution of kauffman’s model with connectivity one.
Journal of Physics A: Mathematical and General, 21(7):1695–1718, apr 1988.

[44] Serge Galam. Majority rule, hierarchical structures, and democratic totalitarianism: A
statistical approach. Journal of Mathematical Psychology, 30(4):426–434, 1986.

[45] Serge Galam. Contrarian deterministic effects on opinion dynamics:“the hung elections
scenario”. Physica A: Statistical Mechanics and its Applications, 333:453–460, 2004.

[46] Martin Gardener. The fantastic combinations of John Conway’s new solitaire game “life”
by Martin Gardner. Scientific American, 223:120–123, 1970.

[47] Carlos Gershenson. Introduction to random boolean networks. arXiv preprint
nlin/0408006, 2004.

[48] E. Goles and J. Olivos. Periodic behaviour of generalized threshold functions. Discrete
Mathematics, 30(2):187–189, 1980.

[49] Eric Goles, Pierre-Etienne Meunier, Ivan Rapaport, and Guillaume Theyssier. Communi-
cation complexity and intrinsic universality in cellular automata. Theoretical Computer
Science, 412(1-2):2–21, 2011.

[50] Eric Goles-Chacc, Françoise Fogelman-Soulie, and Didier Pellegrin. Decreasing energy
functions as a tool for studying threshold networks. Discrete Applied Mathematics,
12(3):261–277, 1985.

[51] Michel Grabisch and Fen Li. Anti-conformism in the threshold model of collective behavior.
Dynamic Games and Applications, 10(2):444–477, 2020.

[52] Michel Grabisch and Agnieszka Rusinowska. A survey on nonstrategic models of opinion
dynamics. Games, 11(4):65, 2020.

106

[53] Pu-hua Guan. Cellular automaton public-key cryptosystem. Complex Systems, 1:51–57,
1987.

[54] Pu-hua Guan and Yu He. Exact results for deterministic cellular automata with additive
rules. Journal of Statistical Physics, 43:463–478, 1986.

[55] Heinz Peter Gumm. Algebras in congruence permutable varieties: geometrical properties
of affine algebras. Algebra Universalis, 9:8–34, 1979.

[56] Howard A. Gutowitz. A hierarchical classification of cellular automata. Physica D:
Nonlinear Phenomena, 45(1):136–156, 1990.

[57] Howard A. Gutowitz. Transients, cycles, and complexity in cellular automata. Physical
Review A, 44, 12 1994.

[58] Howard A. Gutowitz, Jonathan D. Victor, and Bruce W. Knight. Local structure theory
for cellular automata. Physica D: Nonlinear Phenomena, 28(1):18 – 48, 1987.

[59] James E. Hanson. Emergent Phenomena in Cellular Automata. Meyers R. (eds) Encyclo-
pedia of Complexity and Systems Science, 2009.

[60] James E. Hanson and James P. Crutchfield. Computational mechanics of cellular automata:
An example. Physica D: Nonlinear Phenomena, 103(1-4):169–189, 1997.

[61] B. Harris. Probability distributions related to random mappings. Annals of Mathematical
Statistics, 31:1045–1062, 1960.

[62] JPL Hatchett, B Wemmenhove, I Pérez Castillo, T Nikoletopoulos, NS Skantzos, and
ACC Coolen. Parallel dynamics of disordered ising spin systems on finitely connected
random graphs. Journal of Physics A: Mathematical and General, 37(24):6201, 2004.

[63] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system.
Mathematical systems theory, 3:320–375, 1969.

[64] Sui Huang and Donald E. Ingber. Shape-dependent control of cell growth, differentiation,
and apoptosis: Switching between attractors in cell regulatory networks. Experimental
Cell Research, 261(1):91–103, 2000.

[65] Barbora Hudcová. Complexity in cellular automata. Master’s thesis, Charles University,
Faculty of Mathematics and Physics, 2020.

[66] Barbora Hudcová and Jakub Krásenský. Simulation limitations of affine cellular automata,
2023.

[67] Barbora Hudcová and Tomáš Mikolov. Classification of Discrete Dynamical Systems
Based on Transients. Artificial Life, 27(3–4):220–245, 03 2022.

[68] Christian John Hurry, Alexander Mozeika, and Alessia Annibale. Dynamics of sparse
boolean networks with multi-node and self-interactions. Journal of Physics A: Mathemat-
ical and Theoretical, 55(41):415003, 2022. Publisher: IOP Publishing.

[69] Sungmin Hwang, Enrico Lanza, Giorgio Parisi, Jacopo Rocchi, Giancarlo Ruocco, and
Francesco Zamponi. On the number of limit cycles in diluted neural networks. Journal of
Statistical Physics, 181(6):2304–2321, 2020.

[70] Erica Jen. Linear cellular automata and recurring sequences in finite fields. Communica-
tions in Mathematical Physics, 119:13–28, 1988.

107

[71] Leo Kadanoff, Susan Coppersmith, and Maximino Aldana. Boolean dynamics with random
couplings. Perspectives and Problems in Nonlinear Science, 05 2002.

[72] Kunihiko Kaneko. Complexity in basin structures and information processing by the
transition among attractors. Theory and Applications of Cellular Automata, pages 367–399,
01 1985.

[73] Yashodhan Kanoria and Andrea Montanari. Majority dynamics on trees and the dynamic
cavity method. The Annals of Applied Probability, 21(5), 2011.

[74] Jarkko Kari. Reversibility of 2d cellular automata is undecidable. Physica D: Nonlinear
Phenomena, 45(1-3):379–385, 1990.

[75] Jarkko Kari. Cryptosystems based on reversible cellular automata. Manuscript, August,
1992.

[76] Jarkko Kari. Theory of cellular automata: A survey. Theoretical Computer Science,
334(1):3 – 33, 2005.

[77] Jarkko Kari and Nicolas Ollinger. Periodicity and immortality in reversible computing.
In International Symposium on Mathematical Foundations of Computer Science, pages
419–430. Springer, 2008.

[78] Brian Karrer and M. E. J. Newman. Message passing approach for general epidemic
models. Physical Review E, 82(1):016101, 2012.

[79] S.A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of Theoretical Biology, 22(3):437–467, 1969.

[80] S.A. Kauffman and E. D. Weinberger. The nk model of rugged fitness landscapes and
its application to maturation od the immune response. Journal of Theoretical Biology,
141:211–245, 1989.

[81] Petr Kůrka. Topological dynamics of cellular automata. In Codes, Systems, and Graphical
Models, pages 447–485. Springer, 2001.

[82] Christopher G. Langton. Self-reproduction in cellular automata. Physica D: Nonlinear
Phenomena, 10(1):135 – 144, 1984.

[83] Christopher G. Langton. Studying artificial life with cellular automata. Physica D:
Nonlinear Phenomena, 1986.

[84] Christopher G. Langton. Computation at the edge of chaos: Phase transitions and
emergent computation. Physica D: nonlinear phenomena, 42(1-3):12–37, 1990.

[85] Wentian Li, Norman H. Packard, et al. The structure of the elementary cellular automata
rule space. Complex systems, 4(3):281–297, 1990.

[86] Wentian Li, Norman H. Packard, and Chris G. Langton. Transition phenomena in cellular
automata rule space. Physica D: Nonlinear Phenomena, 45(1):77–94, 1990.

[87] Kristin Lindgren and Mats G. Nordahl. Complexity measures and cellular automata.
Complex Syst., 2(4):409–440, aug 1988.

[88] Andrey Y. Lokhov, Marc Mézard, and Lenka Zdeborová. Dynamic message-passing
equations for models with unidirectional dynamics. Physical Review E, 91(1):012811,
2015.

108

[89] Amahury Jafet López-Dı́az, Fernanda Sánchez-Puig, and Carlos Gershenson. Temporal,
structural, and functional heterogeneities extend criticality and antifragility in random
boolean networks. Entropy, 25(2):254, 2023.

[90] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent
neural network training. Computer science review, 3(3):127–149, 2009.

[91] Bartolo Luque and Ricard V. Solé. Phase transitions in random networks: Simple analytic
determination of critical points. Phys. Rev. E, 55:257–260, Jan 1997.

[92] Bartolo Luque and Ricard V. Solé. Lyapunov exponents in random boolean networks.
Physica A: Statistical Mechanics and its Applications, 284(1):33–45, 2000.

[93] J. F. Lynch. A criterion for stability in random boolean cellular automata. arXiv:
Adaptation and Self-Organizing Systems, 1993.

[94] Bruce D Malamud, Gleb Morein, and Donald L Turcotte. Forest fires: an example of
self-organized critical behavior. Science, 281(5384):1840–1842, 1998.

[95] Carsten Marr and Marc-Thorsten Hütt. Outer-totalistic cellular automata on graphs.
Physics Letters A, 373(5):546–549, 2009.

[96] Olivier Martin, Andrew Odlyzko, and Stephen Wolfram. Algebraic properties of cellular
automata. Communications in Mathematical Physics, 93, 06 1984.

[97] Jacques Mazoyer and Ivan Rapaport. Additive cellular automata over Zp and the bottom
of (CA,≤). In Mathematical Foundations of Computer Science 1998: 23rd International
Symposium, MFCS’98 Brno, Czech Republic, August 24–28, 1998 Proceedings 23, pages
834–843. Springer, 1998.

[98] Jacques Mazoyer and Ivan Rapaport. Inducing an order on cellular automata by a grouping
operation. In STACS 98: 15th Annual Symposium on Theoretical Aspects of Computer
Science Paris, France, February 25–27, 1998 Proceedings, pages 116–127. Springer, 2005.

[99] Marc Mézard and Andrea Montanari. Information, physics, and computation. Oxford
University Press, 2009.

[100] Marc Mézard and Giorgio Parisi. The bethe lattice spin glass revisited. The European
Physical Journal B-Condensed Matter and Complex Systems, 20:217–233, 2001.

[101] Marc Mézard and Giorgio Parisi. The cavity method at zero temperature. Journal of
Statistical Physics, 111:1–34, 2003.

[102] Kazushi Mimura and A. C. C. Coolen. Parallel dynamics of disordered Ising spin systems
on finitely connected directed random graphs with arbitrary degree distributions. Journal
of Physics A: Mathematical and Theoretical, 42(41):415001, 2009.

[103] Melanie Mitchell. Computation in cellular automata: A selected review. Non-Standard
Computation, pages 95–140, 1998.

[104] Melanie Mitchell. Complexity: A guided tour. Oxford university press, 2009.

[105] Melanie Mitchell, James Crutchfield, and Rajarshi Das. Evolving cellular automata with
genetic algorithms: A review of recent work. First Int. Conf. on Evolutionary Computation
and Its Applications, 1, 05 2000.

109

[106] Melanie Mitchell, Peter Hraber, and James P. Crutchfield. Revisiting the edge of chaos:
Evolving cellular automata to perform computations. arXiv preprint adap-org/9303003,
1993.

[107] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin. Growing
neural cellular automata. Distill, 5(2):e23, 2020.

[108] Andrés Moreira. Universality and decidability of number-conserving cellular automata.
Theoretical computer science, 292(3):711–721, 2003.

[109] Robert Morris. Zero-temperature Glauber dynamics on Zd. Probability Theory and Related
Fields, 149(3):417–434, 2011.

[110] Roni Muslim, Sasfan A. Wella, and Ahmad R. T. Nugraha. Phase transition in the
majority rule model with the nonconformist agents. Physica A: Statistical Mechanics and
its Applications, 608:128307, 2022.

[111] I. Neri and D. Bollé. The cavity approach to parallel dynamics of Ising spins on a graph.
Journal of Statistical Mechanics: Theory and Experiment, 2009(08):P08009, 2009.

[112] John von Neumann and Arthur W. Burks. Theory of Self-Reproducing Automata. Univer-
sity of Illinois Press, Urbana, USA, 1966.

[113] Stefano Nichele, Mathias Berild Ose, Sebastian Risi, and Gunnar Tufte. Ca-neat: Evolved
compositional pattern producing networks for cellular automata morphogenesis and
replication. IEEE Transactions on Cognitive and Developmental Systems, 10(3):687–700,
2018.

[114] Bartlomiej Nowak and Katarzyna Sznajd-Weron. Homogeneous symmetrical threshold
model with nonconformity: Independence versus anticonformity. Complexity, 2019, 2019.

[115] Charles Ofria and Claus O. Wilke. Avida: A software platform for research in computa-
tional evolutionary biology. Artificial Life, 10(2):191–229, 3 2004.

[116] Nicolas Ollinger. The quest for small universal cellular automata. In Automata, Languages
and Programming: 29th International Colloquium, ICALP 2002 Málaga, Spain, July 8–13,
2002 Proceedings 29, pages 318–329. Springer, 2002.

[117] Nicolas Ollinger. The intrinsic universality problem of one-dimensional cellular au-
tomata. In Annual Symposium on Theoretical Aspects of Computer Science, pages
632–641. Springer, 2003.

[118] Nicolas Ollinger. Universalities in Cellular Automata*, pages 189–229. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[119] Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.
domains/mc/, 2013.

[120] Norman H. Packard. Adaptation toward the edge of chaos. Dynamic patterns in complex
systems, 212:293–301, 1988.

[121] David Peleg. Local majorities, coalitions and monopolies in graphs: A review. Theoretical
Computer Science, 282(2):231–257, 2002.

[122] Niels K. Petersen and Preben Alstrøm. Phase transition in an elementary probabilistic
cellular automaton. Physica A: Statistical Mechanics and its Applications, 235(3):473–485,
1997.

110

https://artowen.su.domains/mc/
https://artowen.su.domains/mc/

[123] Omar Pineda, Hyobin Kim, and Carlos Gershenson. A novel antifragility measure based
on satisfaction and its application to random and biological boolean networks. Complexity,
2019:1–10, 05 2019.

[124] Michael Pinsker. Rosenberg’s characterization of maximal clones. Master’s thesis, Vienna
University of Technology, 2002.

[125] Sidney Pontes-Filho, Pedro Lind, Anis Yazidi, Jianhua Zhang, Hugo Hammer, Gustavo BM
Mello, Ioanna Sandvig, Gunnar Tufte, and Stefano Nichele. A neuro-inspired general
framework for the evolution of stochastic dynamical systems: Cellular automata, random
boolean networks and echo state networks towards criticality. Cognitive Neurodynamics,
14(5):657–674, 2020.

[126] Mikhail Prokopenko, Fabio Boschetti, and Alex J Ryan. An information-theoretic primer
on complexity, self-organization, and emergence. Complexity, 15(1):11–28, 2009.

[127] Ettore Randazzo, Alexander Mordvintsev, Eyvind Niklasson, Michael Levin, and Sam
Greydanus. Self-classifying mnist digits. Distill, 5(8):e00027–002, 2020.

[128] Thomas S. Ray. An approach to the synthesis of life. Artificial Life II, Santa Fe Institute
Studies in the Sciences of Complexity, XI:371–408, 1991.

[129] James Reggia, Steven Armentrout, H. Chou, and Yun Peng. Simple systems that exhibit
self-directed replication. Science (New York, N.Y.), 259:1282–7, 03 1993.

[130] Paul Rendell. Turing universality of the game of life. Collision-based computing, pages
513–539, 2002.

[131] Yurii Rogozhin. Small universal turing machines. Theoretical Computer Science,
168(2):215–240, 1996.

[132] Mathieu Sablik and Guillaume Theyssier. Topological dynamics of cellular automata:
Dimension matters. Theory of Computing Systems, 48(3):693–714, 2011.

[133] Guillermo Santamaŕıa-Bonfil, Carlos Gershenson, and Nelson Fernández. A package
for measuring emergence, self-organization, and complexity based on shannon entropy.
Frontiers in Robotics and AI, 4:10, 2017.

[134] Palash Sarkar. A brief history of cellular automata. ACM Comput. Surv., 32(1):80–107,
2000.

[135] Roberto H. Schonmann. On the Behavior of Some Cellular Automata Related to Bootstrap
Percolation. The Annals of Probability, 20(1):174–193, 1992.

[136] Cosma Rohilla Shalizi and James P. Crutchfield. Computational mechanics: Pattern and
prediction, structure and simplicity. Journal of statistical physics, 104:817–879, 2001.

[137] Claude Elwood Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

[138] Jonathan D.H. Smith. Mal’cev varieties. Springer Lecture Notes, 554, 1976.

[139] Robert I. Soare. Turing Computability, Theory and Applications. Springer-Verlag, 2016.

[140] Z Somogyvari and Sz Payrits. Length of state cycles of random boolean networks: an
analytic study. Journal of Physics A: Mathematical and General, 33(38):6699, 2000.

111

[141] Lisa Soros and Kenneth Stanley. Identifying necessary conditions for open-ended evolution
through the artificial life world of chromaria. Artificial Life Conference Proceedings, pages
793–800, 2014.

[142] Susan Stepney. Nonclassical Computation — A Dynamical Systems Perspective. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[143] Klaus Sutner. Universality and cellular automata. In International Conference on
Machines, Computations, and Universality, pages 50–59. Springer, 2004.

[144] Katarzyna Sznajd-Weron and Jozef Sznajd. Opinion evolution in closed community.
International Journal of Modern Physics C, 11(06):1157–1165, 2000.

[145] Satoshi Takahashi. Self-similarity of linear cellular automata. Journal of Computer and
System Sciences, 44(1):114–140, 1992.

[146] Tommaso Toffoli. Computation and construction universality of reversible cellular au-
tomata. Journal of Computer and System Sciences, 15(2):213 – 231, 1977.

[147] Giuseppe Torrisi, Reimer Kühn, and Alessia Annibale. Uncovering the non-equilibrium
stationary properties in sparse Boolean networks. Journal of Statistical Mechanics: Theory
and Experiment, 2022(5):053303, May 2022.

[148] A. M. Turing. On computable numbers with as application to the entscheidungsproblem.
Proc. London Math. Soc., 2:230–265, 1936.

[149] Alexandre Variengien, Stefano Nichele, Tom Glover, and Sidney Pontes-Filho. Towards
self-organized control: Using neural cellular automata to robustly control a cart-pole
agent. arXiv preprint arXiv:2106.15240, 2021.

[150] Gérard Y. Vichniac. Simulating physics with cellular automata. Physica D: Nonlinear
Phenomena, 10(1):96 – 116, 1984.

[151] Allan R. Vieira and Celia Anteneodo. Threshold q-voter model. Physical Review E,
97(5):052106, 2018.

[152] Abraham Waksman. An optimum solution to the firing squad synchronization problem.
Information and control, 9(1):66–78, 1966.

[153] Mitchell M. Waldrop. Complexity: The emerging science at the edge of order and chaos.
Simon and Schuster, 1993.

[154] X. Wang, Joseph Lizier, and Mikhail Prokopenko. Fisher information at the edge of chaos
in random boolean networks. Artificial life, 17:315–29, 07 2011.

[155] Nicholas W. Watkins, Gunnar Pruessner, Sandra C. Chapman, Norma B Crosby, and
Henrik J Jensen. 25 years of self-organized criticality: Concepts and controversies. Space
Science Reviews, 198:3–44, 2016.

[156] Stephen J. Willson. On the ergodic theory of cellular automata. Mathematical systems
theory, 9:132–141, 1975.

[157] Stephen Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys., 55:601–644,
Jul 1983.

[158] Stephen Wolfram. Universality and complexity in cellular automata. Physica D: Nonlinear
Phenomena, 10(1):1–35, 1984.

112

[159] Stephen Wolfram. A New Kind of Science. Wolfram Media, Champaign, USA, 2002.

[160] Andrew Wuensche. The emergence of memory categorisation far from equilibrium. Towards
a Science of Consciousness: The First Tuscon Discussions and Debates, pages 383–392,
1996.

[161] Andrew Wuensche. Exploring discrete dynamics - Second Edition. The DDLab manual.
Luniver Press, 2016.

[162] Andrew Wuensche and Mike Lesser. The global dynamics of celullar automata: An atlas
of basin of attraction fields of one-dimensional cellular automata. J. Artificial Societies
and Social Simulation, 4, 01 2001.

[163] Ozgur Yilmaz. Reservoir computing using cellular automata, 2014.

[164] Ahad N. Zehmakan. Two Phase Transitions in Two-Way Bootstrap Percolation. In
Pinyan Lu and Guochuan Zhang, editors, 30th International Symposium on Algorithms
and Computation (ISAAC 2019), volume 149 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 5:1–5:21, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[165] Hector Zenil. Compression-based investigation of the dynamical properties of cellular
automata and other systems. Computing Research Repository - CORR, 19, 10 2009.

[166] Hector Zenil. On the dynamic qualitative behavior of universal computation. Complex
Systems, 20, 01 2012.

[167] Pan Zhang. Inference of kinetic Ising model on sparse graphs. Journal of Statistical
Physics, 148(3):502–512, 2012.

113

List of publications
• B. Hudcová, T. Mikolov, Classification of Complex Systems Based on Transients, Artificial

Life Conference Proceedings, MIT Press, 367–375 (2020).

• B. Hudcová, T. Mikolov, Computational Hierarchy of Elementary Cellular Automata,
Artificial Life Conference Proceedings, MIT Press, 361–368 (2021).

• B. Hudcová, T. Mikolov, Classification of Discrete Dynamical Systems Based on Transients,
Artificial Life, 27 (3-4), MIT Press, 220–245 (2022).

• T. Lindell, B. Hudcová, S. Nichele Canonical Computations in Cellular Automata and
Their Application for Reservoir Computing, Artificial Life Conference Proceedings, MIT
Press, 109–117 (2023).

• F. Behrens, B. Hudcová, L. Zdeborová, The Backtracking Dynamical Cavity Method, Phys.
Rev. X, 13 (3), American Physical Society (2023).

• F. Behrens, B. Hudcová, L. Zdeborová, Dynamical Phase Transitions in Graph Cellular
Automata, submitted (2023). Available at arXiv:2310.15894.

• B. Hudcová, S. Nichele, T. Mikolov Studying Encoder-Decoder Relation between Cellular
Automata to Uncover Their Computational Structure, submitted (2023). Available at
SSRN:4244761.

• B. Hudcová, J. Krásenský, Simulation Limitations of Affine Cellular Automata, submitted
(2023). Available at arXiv:2311.14477.

114

https://arxiv.org/abs/2310.15894
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4244761
https://arxiv.org/abs/2311.14477

	Introduction
	Introduction
	General Introduction
	Contribution of the Authors

	Elementary Definitions
	One-dimensional Cellular Automata
	Two-dimensional Cellular Automata
	Attractors and Transients

	Brief History of Cellular Automata
	Complexity Measures of Cellular Automata
	Description Length of Space-Time Diagrams
	Typical Convergence Time
	Self-Organized Criticality and Avalanche Distributions
	Discussing the Gaps

	Transient Classification
	Phase Transitions

	Dynamical Phase Transitions in Graph Cellular Automata
	Randomized Discrete Dynamical Systems
	Backtracking Dynamical Cavity Method
	Dynamical Phase Transitions in an Anti-Conformist GCA

	Cellular Automata as Models of Computation
	Cellular Automata as Efficient Computers
	Theory of CA Computation

	Simulation Limitations of Affine Cellular Automata
	Defining CA Simulation
	Simulation Limitations of Affine Cellular Automata

	Simulation Capacities of Canonical Additive Automata

	Classification of Discrete Dynamical Systems Based on Transients
	Introduction
	Transient Classification: A General Method
	Cellular Automata
	Introducing Cellular Automata
	History of CA Classifications
	Transient Classification of ECA
	Discussion
	Transient Classification of 2D CA
	Transients Classification of Other Well Known CA

	Turing Machines
	Introducing Turing Machines
	Transient Classification of Turing Machines
	Transient Classification of Universal TMs

	Random Boolean Networks
	Introducing Random Boolean Networks
	Transient Classification of RBNs
	Results

	Conclusion
	Future Work

	Dynamical Phase Transitions in Graph Cellular Automata
	Introduction
	Terminology and Notation
	Conforming Non-Conformist GCAs
	Types of Dynamical Phases

	Dynamical Cavity Methods
	Dynamical Phase Transitions for Conforming Non-Conformist GCAs
	Conclusion and Open Questions
	Larger degree behaviour
	Supporting Empirics for Phase Characterization
	Supporting Material for Dynamical Phase Transition Predictions using the (B)DCM and Empirical Methods

	Simulation Limitations of Affine Cellular Automata
	Introduction
	Defining Simulation of Cellular Automata
	CA Canonical Relations
	Iterative Powers of CAs
	Elementary Properties of CA Simulation

	Introducing Additive and Affine Automata
	Related Work on CA Simulation

	Simulation Limitations of Additive and Affine Automata
	Sub-automata of affine CAs
	Sub-automata of additive CAs
	Quotient automata of affine CAs
	Main Result and Examples

	Concluding Remarks

	Simulation Capacity of Canonical Additive Automata
	Results Summary
	Iterative Powers of Canonical Additive CAs Split into Products
	Characterizing the Simulation Capacity of Canonical Additive CAs
	Invariant Subspaces of Iterated Powers
	Components of CA Iterated Powers
	Analysing Invariant Subspaces of CA Iterated Powers

	Concluding Remarks

	Bibliography
	List of publications

