Metody aproximace plně pravděpodobnostního návrhu rozhodování za neúplné znalosti
Metody aproximace plně pravděpodobnostního návrhu rozhodování za neúplné znalosti
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/11886Identifiers
Study Information System: 44192
Collections
- Kvalifikační práce [11244]
Author
Advisor
Referee
Andrýsek, Josef
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Discrete Mathematics and Optimization
Department
Department of Applied Mathematics
Date of defense
28. 1. 2008
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
V diplomové práci představujeme účinný algoritmus pro výpočet odhadu optimální strategie řízení dynamického systému. Tento algoritmus aproximuje optimální rovnice, aniž by potlačil principiální nejistotu plynoucí z neúplné znalostí řízeného systému. Tím si udržuje schopnost neustálého prověřování aktuálních znalostí, jež je pravou podstatou duálního řízení. Nedílnou součástí řešení je snížení datové náročnosti algoritmu pomocí tzv. HDMR aproximace. Vyvinuli jsme obecnou metodu řešení lineárních integrálních rovnic za použití této aproximace. Právě ta je užita pro řešení linearizovaných rovnic optimálního řízení. Jejich klasická varianta však linearizaci odolává, a proto jsme použili tzv. plně pravděpodobnostní návrh rozhodování. V této formulaci lze snadněji najít (lineární integrální) rovnici pro horní a dolní odhad funkce popisující optimální řízení. Výsledkem celého postupu je systém lineárních algebraických rovnic. Pro ilustraci vyvinuté techniky je v práci vyřešen jednoduchý problém.
In this thesis, we introduce an efficient algorithm for an optimal decision strategy approximation. It approximates the optimal equations of dynamic programming without omitting the principal uncertainty stemming from an uncomplete knowledge of a controlled system. Thus, the algorithm retains the ability to constantly verify the actual knowledge, which is the essence of dual control. An integral part of solution proposed is a reduction of memory demands using HDMR approximation. We have developed a general method for numerical solution of linear integral equations based on this approximation, and applied it to solve a linearized variant of optimal equations. To achieve such a variant, it was necessary to apply a different control design called fully probabilistic design which allows easier finding of a linearized approximation. The result of this method is a pair of linear algebraic systems for the upper and lower bound on the central function describing the optimal strategy. One illustrative example has been completely resolved.