Metody bootstrap pro závislá pozorování
Bootstrap methods for dependent observations
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/14881Identifikátory
SIS: 45840
Kolekce
- Kvalifikační práce [11244]
Autor
Vedoucí práce
Oponent práce
Kaňková, Vlasta
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Pravděpodobnost, matematická statistika a ekonometrie
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
12. 5. 2008
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
This Diploma thesis deals with principles, asymptotic properties and comparison of bootstrap methods for dependent observations. In the first chapter principal ideas and benefits of bootstrap method for independent data are introduced. Subsequently, these knowledge are applied to data exhibiting dependency. Block, frequency and sieve bootstrap methods are presented. Afterwards, principle of each method is described in broader context, asymptotic properties are presented and some of them are derived. Strong dependency of block bootstrap method on block length is discussed and algorithms for empirical choice of optimal block length are described. The main aim of this work is to compare discussed methods from theoretical point of view and via simulation study. Eventually, a few examples, which are based on real data sets, are presented. Discussed principles are implemented in software R and software Fortran.