Numerické řešení stlačitelného proudění
Numerické řešení stlačitelného proudění
diploma thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/14898Identifiers
Study Information System: 45776
Collections
- Kvalifikační práce [11244]
Author
Advisor
Referee
Dolejší, Vít
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Mathematical modelling in physics and technology
Department
Department of Numerical Mathematics
Date of defense
20. 5. 2008
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
Předkládaná práce se věnuje problematice proudění nevazké stlačitelné tekutiny v časově proměnné oblasti. Jsou zde popsány Eulerovy rovnice, jejich vlasnosti a řešení pomocí nespojité Galerkinovy metody konečných prvků (DGFEM) v časově nezávislé oblasti. Hlavní náplní práce je studium dané problematiky v časově proměnných oblastech. Za tímto účelem je zde představena tzv. ALE metoda. Pro řídící rovnice v ALE formulaci je odvozena jejich prostorová a časová diskretizace opět pomocí DGFEM metody. Krátce je zmíněna i stabilizace schématu a řešení vzniklé lineární soustavy pomocí GMRES metody. Na závěr jsou uvedeny a porovnány výsledky získané pomocí dvou rozdílných ALE formulací řídících rovnic v obdélníkové oblasti s pohyblivou částí spodní stěny.
This work deals with the problem of inviscid, compressible flow in a time-dependent domain. We describe mathematical properties of the Euler equations and the system of governing equations is solved with the aid of the discontinuous Galerkin finite element method (DGFEM) in the time-indepentent domain. The main aim of this work is the study of this problem in time-dependent domains. For this reason the Arbitrary Lagrangian-Eulerian (ALE) method is presented. The governing equations are formulated in the ALE formulation and discretized in space and time by the DGFEM. Shortly we mention the shock capturing of the obtained scheme and the solution of the resulting linear system with the aid of Generalized Minimal Residual (GMRES) method. At the end of this work we present and compare results obtained by two different ALE formulations of the governing equations in the rectangular domain with a moving part of lower wall.