Andersonova veta
Anderson's theorem
Andersonova věta
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/175662Identifikátory
SIS: 235985
Kolekce
- Kvalifikační práce [11241]
Autor
Vedoucí práce
Oponent práce
Lachout, Petr
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
7. 9. 2022
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Slovenština
Známka
Výborně
Klíčová slova (česky)
unimodalita|integrál|Brunn-Minkowského nerovnovst|konvexita|vícerozměrná míraKlíčová slova (anglicky)
unimodality|integral|Brunn-Minkowski inequality|convexity|multivariate measureV tejto práci sa budeme zaoberať tvrdením z oblasti reálnej analýzy a geometrie s názvom Andersonova veta. Jedná sa o integrálnu nerovnosť pre symetrické kvázikonkávne funkcie, kde sa integruje cez symetrické konvexné množiny. Andersonovu vetu dôkladne dokážeme. Budeme skúmať, kedy v Andersonovej vete nastane rovnosť a kedy naopak ostrá nerovnosť. Pri štúdiu tejto otázky narazíme na isté problémy v publikovaných vý- sledkoch, ktoré sa pokúsime vyjasniť. V práci sa tiež budeme zaoberať možnými rozšíreni- ami Andersonovej vety. Konkrétne uvedieme výsledky využívajúce grupovú invarianciu a teóriu s-konkávnych funkcií. Ako naznačíme v závere práce, Andersonova veta je užitočný a často používaný nástroj v mnohorozmernej štatistike. 1
In this thesis we explore a theorem from real analysis and geometry called Anderson's theorem. It concerns an integral inequality for symmetric quasi-concave functions, where the integration is done over a symmetric convex set. A thorough proof of Anderson's theorem is given. In addition, we investigate cases in which equality or strict inequality occurs. While studying this topic, we come across some problems in published papers and we try to clarify them. Furthermore, we explore possible extensions of the theorem. In particular, results involving group invariance and theory of s-concave functions are mentioned. As outlined in the final part of the thesis, Anderson's theorem is a useful and widely used tool in multivariate statistics. 1