Výroková logika a algebra
Výroková logika a algebra
diplomová práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/17708/thumbnail.png?sequence=7&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/17708Identifikátory
SIS: 46774
Kolekce
- Kvalifikační práce [11264]
Autor
Vedoucí práce
Oponent práce
Pudlák, Pavel
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematické metody informační bezpečnosti
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
10. 9. 2008
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Algebraic proof systems of which the most important are the polynomial calculus and the Nullstellensatz proof system are proof systems that use algebraic means for proving propositional tautologies - they are based on polynomial identities over (commutative) rings. Razborov [9] have proved a non-trivial lower bound on degree for polynomia calculus proofs of the tautologies (a set of polynomials) that express the pigeonhole principle over any field. This work gathers present important results for algebraic proof systems and generalizes the Razborov's construction used in his proof of the lower bound to another set of polynomials. We explicitly describe the basis of the vector space of polynomials that are derivable by a small degree polynomial calculus proof from the tautologies that express a variant of the pigeonhole principle (that generalizes the principle for multifunctions).