Kosouvislé algebry
Coconnected algebras
bakalářská práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/191285Identifikátory
SIS: 266655
Kolekce
- Kvalifikační práce [11327]
Autor
Vedoucí práce
Oponent práce
Příhoda, Pavel
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
19. 6. 2024
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
kosouvislá algebra|n-kosouvislá|n-kosouvislost|homomorfismus|univerzální algebraKlíčová slova (anglicky)
coconnected algebra|n-coconnected|n-coconnectedness|homomorphism|universal algebraAlgebra A je n-kosouvislá, pokud každý homomorfismus z její n-té mocniny, An , do A závisí pouze na jedné proměnné. Pro každé přirozené n ≥ 2 existuje algebra, která je n-kosouvislá a není (n + 1)-kosouvislá. Zatím zkonstruované příklady těchto algeber jsou však velké z hlediska počtu prvků nebo počtu operací. Cílem této práce je zlepšit odhad počtu prvků, které taková algebra musí mít pro obecné n. Pro n ≥ 2 je známa konkrétní konstrukce s 2n prvky a potenciálně nejmenší možný počet prvků takové algebry je n +1 pro n ≥ 3. V této práci zkonstruujeme pro všechna n ≥ 2 příklady nejmenších možných n-kosouvislých algeber, které nejsou (n + 1)-kosouvislé. 1
If every homomorphism from the n-th power of an algebra A to A depends on one variable only, then we say that A is n-coconnected. For every integer n ≥ 2 there exists a n-coconnected algebra, which is not (n + 1)-coconnected. Examples of these algebras constructed in previous articles were large in terms of either cardinality of the algebra or the number of operations. The goal of this thesis is to improve the lower and upper estimate of the lowest possible cardinality of a n-coconnected and not (n + 1)- coconnected algebra. There is already a construction of these algebras for every possible n with cardinality 2n and for n ≥ 3 the lower estimate of the lowest possible cardinality is currently n + 1. In this thesis we will construct examples of the smallest possible n-coconnected and not (n + 1)-coconnected algebras for every n ≥ 2. 1