Cross-lingual transfer for the annotation of the SynSemClass ontology
Mezijazykový transfer pro anotaci SynSemClass ontologie
bachelor thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/192066Identifiers
Study Information System: 256636
Collections
- Kvalifikační práce [11244]
Author
Advisor
Consultant
Straková, Jana
Referee
Štěpánek, Jan
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Computer Science with specialisation in Artificial Intelligence
Department
Institute of Formal and Applied Linguistics
Date of defense
28. 6. 2024
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
English
Grade
Excellent
Keywords (Czech)
annotation projection|zero-shot cross-lingual transfer|ontologie|vícejazyčné zpracování přirozeného jazyka|lexikální sémantikaKeywords (English)
annotation projection|zero-shot cross-lingual transfer|ontology|multilingual natural language processing|lexical semanticsTato pra ́ce porovna ́va ́ dva pr ̌ı 'stupy k automaticke ́ pr ̌edanotaci se ́manticky ́ch tr ̌ı ́d sloves ve ve ̌ta ́ch za u ́c ̌elem pr ̌ida ́nı ́ nove ́ho jazyka do ontologie SynSemClass. Oba pr ̌ı 'stupy vycha ́zejı ́ z vı ́cejazyc ̌ne ́ho deep learning klasifikac ̌nı ́ho modelu, ktery ́ byl fine-tunovany ́ na jiz ̌ anotovany ́ch anglicky ́ch, c ̌esky ́ch a ne ̌mecky ́ch datech z ontologie. Prvnı ́, vı ́ce tradic ̌nı ́, pr ̌ı 'stup je annotation projection. Pouz ̌ı ́va ́ paralelnı ́ korpus a vy 's ̌e zmı ́ne ̌ny ́ model k vytvor ̌enı ́ predikcı ́ na zdrojove ́m jazyce, ktery ́ je jiz ̌ obsaz ̌en v ontologii, a tyto predikce projektuje na cı ́lovy ́ jazyk pomocı ́ automaticke ́ho word alignmentu. Druhy ́ pr ̌ı 'stup, zero-shot cross-lingual transfer, pr ̌edpokla ́da ́, z ̌e vı ́cejazykove ́ schopnosti deep learning modelu jsou dostatec ̌ne ́ a z ̌e mu ̊z ̌eme vytvor ̌it kvalitnı ́ predikce pr ̌ı ́mo na cı ́love ́m jazyce, i kdyz ̌ model nebyl nikdy tre ́nova ́n pro danou u ́lohu na dane ́m cı ́love ́m jazyce. Pro u ́c ̌ely vyhodnocenı ́ ruc ̌ne ̌ vytva ́r ̌ı ́me a anotujeme maly ́ korejsky ́ dataset za u ́c ̌elem otestova ́nı ́ vy 'sledku ̊ na jazyce, ktery ́ se vy ́znamne ̌ lis ̌ı ́ od anglic ̌tiny, c ̌es ̌tiny a ne ̌mc ̌iny. Dospı ́va ́me k za ́ve ̌ru, z ̌e zero-shot transfer vykazuje vy ́razne ̌ leps...
This work compares two approaches to automatic preannotation of semantic class to verbs in a sentence for the purpose of adding a new language to the SynSemClass ontology. Both approaches rely on a multilingual deep learning classification model fine-tuned on already annotated English, Czech and German data of the ontology. The first, more classical, approach is annotation projection. It uses a parallel corpus and the aforementioned model to make predictions on a source language already present in the ontology and projects the predictions onto the target language using automated word alignment. The second approach, zero-shot cross-lingual transfer, assumes that the multilingual properties of the underlying model are sufficient and that we can make reasonable predictions directly on the target language, even though the model was never trained for that specific task on the specific target language. For the purpose of evaluation, we manually build and annotate a small Korean language dataset to test the performance on a language significantly different from English, Czech and German. We conclude that the zero-shot approach performs notably better than the alignment approach (p < 0.005) obtaining 0.54 both in recall and precision, compared to 0.37 and 0.41 in recall and precision respectively of the alignment...