Procesy slabé saturace v multipartitních hypergrafech
Weak saturation processes in multipartite hypergraphs
bachelor thesis (DEFENDED)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/192078Identifiers
Study Information System: 268508
Collections
- Kvalifikační práce [11216]
Author
Advisor
Referee
Tancer, Martin
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
Computer Science with specialisation in Foundations of Computer Science
Department
Department of Applied Mathematics
Date of defense
28. 6. 2024
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Excellent
Keywords (Czech)
wsat|slabá saturácia|hypergraf|extremálna kombinatorikaKeywords (English)
wsat|weak saturation|hypergraph|extremal combinatoricsDané hypergrafy H a P, wsat(H, P) označuje najmenší počet hrán v podgrafe H s vlastnosťou, že chýbajúce hrany možno postupne pridať tak, že pridanie každej hrany vytvorí novú kópiu P. V roku 1985 Alon dokázal, že wsat(Kn, P)/n konverguje k vlastnej limite pre akýkoľvek graf P. Tuza sa v roku 1992 domnieval, že platí zobecnenie tejto vety pre r-uniformné hypergrafy a dokázali ho Shapira a Tyomkyn v roku 2021. V tejto práci používame metodológiu, ktorú zaviedli Shapira a Tyomkyn, aby sme dokázali podobnuú vetu, v ktorej H je úplný r-partitný r-uniformný hypergraf.
Given hypergraphs H and P, wsat(H, P) denotes the smallest number of edges in a subgraph of H with the property that the missing edges can be sequentially added such that the addition of every edge creates a new copy of P. In 1985 Alon proved that wsat(Kn, P)/n tends to a finite limit for any graph P. A generalisation of this Theorem to r-uniform hypergraphs was conjectured by Tuza in 1992 and proved by Shapira and Tyomkyn in 2021. In this thesis, we use the methodology introduced by Shapira and Tyomkyn to prove a similar theorem when H is a complete r-partite r- uniform hypergraph.