Dynamická korekce vlivu vegetace při modelování půdní vlhkosti ze SAR dat při užití modelu detekce změn
Dynamic correction of vegetation effects in soil moisture modelling from SAR data using a change detection model
diplomová práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/194193Identifikátory
SIS: 244782
Kolekce
- Kvalifikační práce [20281]
Autor
Vedoucí práce
Oponent práce
Kolář, Jan
Fakulta / součást
Přírodovědecká fakulta
Obor
Geoinformatika, kartografie a dálkový průzkum Země
Katedra / ústav / klinika
Katedra aplikované geoinformatiky a kartografie
Datum obhajoby
10. 9. 2024
Nakladatel
Univerzita Karlova, Přírodovědecká fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
surface soil moisture, soil moisture retrieval, Sentinel-1, SM Change detection, vegetation correctionKlíčová slova (anglicky)
povrchová vlhkost půdy, získávání vlhkosti půdy, Sentinel-1, detekce změn SM, korekce vegetaceIn times of climate change, soil moisture monitoring is an important aspect for its understanding and possibly mitigation. SAR data with high spatial resolution is an important tool for this purpose. This thesis deals with their use in SM retrieval from Sentinel-1 satellite data. The applied change detection model is further calibrated in order to remove the influence of vegetation on the resulting SM estimates by using the SAR variable cross-polarisation ratio. The RMSD decreased by 7% and the correlation increased by 8% using the calibration. The results presented do not achieve the accuracy of the ASCAT SM product but indicate the potential for vegetation correction using the Cross-polarization Ratio variable in further research to obtain a higher spatial resolution SM product. Keywords: surface soil moisture, soil moisture retrieval, Sentinel-1, SM Change detection, vegetation correction Abstrakt: V dob klimatick˝ch zm n je sledování p dní vlhkosti d leûit˝m aspektem pro její pochopení. a p ípadné zmírn ní jejího dopadu. Data SAR s vysok˝m pros- torov˝m rozliöením jsou pro tento ú el d leûit˝m nástrojem. Tento práce se zab˝vá jejich vyuûitím p i získávání SM z dat druûice Sentinel-1. Pouûit˝ model detekce zm n je dále kalibrován za ú elem odstran ní vlivu vegetace na v˝sledné odhady SM pomocí...
In times of climate change, soil moisture monitoring is an important aspect for its understanding and possibly mitigation. SAR data with high spatial resolution is an important tool for this purpose. This thesis deals with their use in SM retrieval from Sentinel-1 satellite data. The applied change detection model is further calibrated in order to remove the influence of vegetation on the resulting SM estimates by using the SAR variable cross-polarisation ratio. The RMSD decreased by 7% and the correlation increased by 8% using the calibration. The results presented do not achieve the accuracy of the ASCAT SM product but indicate the potential for vegetation correction using the Cross-polarization Ratio variable in further research to obtain a higher spatial resolution SM product. Keywords: surface soil moisture, soil moisture retrieval, Sentinel-1, SM Change detection, vegetation correction Abstrakt: V dob klimatick˝ch zm n je sledování p dní vlhkosti d leûit˝m aspektem pro její pochopení. a p ípadné zmírn ní jejího dopadu. Data SAR s vysok˝m pros- torov˝m rozliöením jsou pro tento ú el d leûit˝m nástrojem. Tento práce se zab˝vá jejich vyuûitím p i získávání SM z dat druûice Sentinel-1. Pouûit˝ model detekce zm n je dále kalibrován za ú elem odstran ní vlivu vegetace na v˝sledné odhady SM pomocí...