Hloubka funkcionálních dat
The Depth of Functional Data.
Hloubka funkcionálních dat
diplomová práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/36245/thumbnail.png?sequence=8&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/36245Identifikátory
SIS: 75047
Kolekce
- Kvalifikační práce [11266]
Autor
Vedoucí práce
Oponent práce
Omelka, Marek
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Pravděpodobnost, matematická statistika a ekonometrie
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
9. 5. 2011
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Slovenština
Známka
Výborně
Klíčová slova (česky)
hĺbka dát, funkcionálne dáta, klasifikácia dátKlíčová slova (anglicky)
data depth, functional data, data classificationHĺbková funkcia (resp. funkcionál) je moderný neparametrický nástroj štatistickej analýzy (konečnorozmerných) dát s množstvom praktických aplikácií. V práci sa zameriame na možnosti rozšírenia konceptu hĺbky na prípad funkcionálnych dát. V prípade konečnorozmerných funkcionálnych dát využijeme izomorfizmus priestoru funkcií a konečnorozmerného euklidovského priestoru, čo nám umožní zaviesť indukované hĺbky funkcionálnych dát. Dokážeme tvrdenie o vlastnostiach indukovaných hĺbok a na príkladoch si ukážeme možnosti a obmedzenia ich praktického použitia. Ďalej popíšeme a na jednoduchých príkladoch ukážeme výhody aj nevýhody zavedených hĺbkových funkcionálov používaných v literatúre (Fraimanových-Munizovej hĺbok a pásových hĺbok). Na odstránenie najväčšej vyvstávajúcej nevýhody známych hĺbok pre funkcionálne dáta zavedieme novú, K-pásovú hĺbku založenú na rozšírení inferencie zo spojitých na hladké funkcie. Odvodíme niekoľko dôležitých vlastností a na záverečnej simulačnej štúdií ukážeme na príklade riadenej klasifikácie funkcionálnych dát praktickú výhodnosť nového prístupu oproti predchádzajúcim. Na záver porovnáme výpočetnú náročnosť všetkých predstavených hĺbkových funkcionálov.
The depth function (functional) is a modern nonparametric statistical analysis tool for (finite-dimensional) data with lots of practical applications. In the present work we focus on the possibilities of the extension of the depth concept onto a functional data case. In the case of finite-dimensional functional data the isomorphism between the functional space and the finite-dimensional Euclidean space will be utilized in order to introduce the induced functional data depths. A theorem about induced depths' properties will be proven and on several examples the possibilities and restraints of it's practical applications will be shown. Moreover, we describe and demonstrate the advantages and disadvantages of the established depth functionals used in the literature (Fraiman-Muniz depths and band depths). In order to facilitate the outcoming drawbacks of known depths, we propose new, K-band depth based on the inference extension from continuous to smooth functions. Several important properties of the K-band depth will be derived. On a final supervised classification simulation study the reasonability of practical use of the new approach will be shown. As a conclusion, the computational complexity of all presented depth functionals will be compared.