Shluková analýza pro funkcionální data
Cluster analysis for functional data
diplomová práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/39803/thumbnail.png?sequence=8&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/39803Identifikátory
SIS: 75982
Kolekce
- Kvalifikační práce [11266]
Autor
Vedoucí práce
Oponent práce
Hušková, Marie
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Pravděpodobnost, matematická statistika a ekonometrie
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
14. 5. 2012
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
funkcionální data, shluková analýza, snížení dimenze dat, směs rozdělení, EM-algoritmusKlíčová slova (anglicky)
functional data, cluster analysis, reduction of data dimension, mixture of distribution, EM-algorithmV této práci se zabýváme shlukovou analýzou pro funkcionální data. Funkcionální data obsahují soubor subjektů, které jsou charakterizovány opakovanými měřeními určité proměnné. Na základě těchto měření budeme chtít subjekty rozdělit do skupin (shluků) tak, aby si subjekty v jednom shluku byly podobné a lišily se od subjektů v ostatních shlucích. Prvním přístupem, který použijeme, je snížení dimenze dat a následné použití shlukovací metody K-means. Druhým přístupem je použití konečné směsi normálních lineárních smíšených modelů. Parametry tohoto modelu odhadneme metodou maximální věrohodnosti pomocí EM-algoritmu. Během celé práce aplikujeme popsané postupy na reálná meteorologická data.
In this work we deal with cluster analysis for functional data. Functional data contain a set of subjects that are characterized by repeated measurements of a variable. Based on these measurements we want to split the subjects into groups (clusters). The subjects in a single cluster should be similar and differ from subjects in the other clusters. The first approach we use is the reduction of data dimension followed by the clustering method K-means. The second approach is to use a finite mixture of normal linear mixed models. We estimate parameters of the model by maximum likelihood using the EM algorithm. Throughout the work we apply all described procedures to real meteorological data.