Perfektní funkce první třídy
Perfect functions of the first Baire class
bachelor thesis (DEFENDED)
![Document thumbnail](/bitstream/handle/20.500.11956/40585/thumbnail.png?sequence=7&isAllowed=y)
View/ Open
Permanent link
http://hdl.handle.net/20.500.11956/40585Identifiers
Study Information System: 47554
Collections
- Kvalifikační práce [11266]
Author
Advisor
Referee
Zajíček, Luděk
Faculty / Institute
Faculty of Mathematics and Physics
Discipline
General Mathematics
Department
Department of Mathematical Analysis
Date of defense
11. 9. 2012
Publisher
Univerzita Karlova, Matematicko-fyzikální fakultaLanguage
Czech
Grade
Excellent
Široká třída problémů v matematické analýze se dá popsat jako hledání vlastností V takových, že pro každé F z předem daného systému zobrazení F mezi prostory K a L má libovolná reálná funkce na prostoru L vlastnost V právě tehdy, pokud ji má její složení s F. Práce se inspiruje v [1], kde je tento problém zkoumán v podobě stability funkcí Baireových tříd na kompaktních topologických prostorech vůči složení se spojitým zobrazením. Cílem práce bude seznámit se s původním výsledkem, mírně jej zlepšit na kompaktních metrických prostorech, pak se blíže podívat na jemnější strukturu B1 funkcí a zkusit v tomto prostředí najít podobný druh stability. [1] J. Lukeš, J. Malý, I. Netuka, J. Spurný, Integral representation theory: ap- plications to convexity, Banach spaces and potential theory, Walter de Gruyter (2010).
A wide class of problems in mathematical analysis can be described as searching for properties P such that for each F from a given system of mappings F between spaces K and L an arbitrary real valued function on L has the property P if and only if its composition with F also has this property. The inspiration for this text comes from [1], where the mentioned problem is examined in the form of stability of Baire classes of functions towards composition with a continuous mapping between compact topological spaces. The goal of this text will be to get acquainted with the original result, to slightly improve it on compact metric spaces, then to take a closer look at the finer structure of B1 functions and to try to find a similar kind of stability in this environment. [1] J. Lukeš, J. Malý, I. Netuka, J. Spurný, Integral representation theory: ap- plications to convexity, Banach spaces and potential theory, Walter de Gruyter (2010).