Zobrazit minimální záznam

Numerické řešení stlačitelného proudění
dc.contributor.advisorFeistauer, Miloslav
dc.creatorProkopová, Jaroslava
dc.date.accessioned2017-04-10T10:51:15Z
dc.date.available2017-04-10T10:51:15Z
dc.date.issued2008
dc.identifier.urihttp://hdl.handle.net/20.500.11956/14898
dc.description.abstractThis work deals with the problem of inviscid, compressible flow in a time-dependent domain. We describe mathematical properties of the Euler equations and the system of governing equations is solved with the aid of the discontinuous Galerkin finite element method (DGFEM) in the time-indepentent domain. The main aim of this work is the study of this problem in time-dependent domains. For this reason the Arbitrary Lagrangian-Eulerian (ALE) method is presented. The governing equations are formulated in the ALE formulation and discretized in space and time by the DGFEM. Shortly we mention the shock capturing of the obtained scheme and the solution of the resulting linear system with the aid of Generalized Minimal Residual (GMRES) method. At the end of this work we present and compare results obtained by two different ALE formulations of the governing equations in the rectangular domain with a moving part of lower wall.en_US
dc.description.abstractPředkládaná práce se věnuje problematice proudění nevazké stlačitelné tekutiny v časově proměnné oblasti. Jsou zde popsány Eulerovy rovnice, jejich vlasnosti a řešení pomocí nespojité Galerkinovy metody konečných prvků (DGFEM) v časově nezávislé oblasti. Hlavní náplní práce je studium dané problematiky v časově proměnných oblastech. Za tímto účelem je zde představena tzv. ALE metoda. Pro řídící rovnice v ALE formulaci je odvozena jejich prostorová a časová diskretizace opět pomocí DGFEM metody. Krátce je zmíněna i stabilizace schématu a řešení vzniklé lineární soustavy pomocí GMRES metody. Na závěr jsou uvedeny a porovnány výsledky získané pomocí dvou rozdílných ALE formulací řídících rovnic v obdélníkové oblasti s pohyblivou částí spodní stěny.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleNumerické řešení stlačitelného prouděníen_US
dc.typediplomová prácecs_CZ
dcterms.created2008
dcterms.dateAccepted2008-05-20
dc.description.departmentDepartment of Numerical Mathematicsen_US
dc.description.departmentKatedra numerické matematikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId45776
dc.title.translatedNumerické řešení stlačitelného prouděnícs_CZ
dc.contributor.refereeDolejší, Vít
dc.identifier.aleph000985901
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical modelling in physics and technologyen_US
thesis.degree.disciplineMatematické modelování ve fyzice a technicecs_CZ
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra numerické matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Numerical Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické modelování ve fyzice a technicecs_CZ
uk.degree-discipline.enMathematical modelling in physics and technologyen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csPředkládaná práce se věnuje problematice proudění nevazké stlačitelné tekutiny v časově proměnné oblasti. Jsou zde popsány Eulerovy rovnice, jejich vlasnosti a řešení pomocí nespojité Galerkinovy metody konečných prvků (DGFEM) v časově nezávislé oblasti. Hlavní náplní práce je studium dané problematiky v časově proměnných oblastech. Za tímto účelem je zde představena tzv. ALE metoda. Pro řídící rovnice v ALE formulaci je odvozena jejich prostorová a časová diskretizace opět pomocí DGFEM metody. Krátce je zmíněna i stabilizace schématu a řešení vzniklé lineární soustavy pomocí GMRES metody. Na závěr jsou uvedeny a porovnány výsledky získané pomocí dvou rozdílných ALE formulací řídících rovnic v obdélníkové oblasti s pohyblivou částí spodní stěny.cs_CZ
uk.abstract.enThis work deals with the problem of inviscid, compressible flow in a time-dependent domain. We describe mathematical properties of the Euler equations and the system of governing equations is solved with the aid of the discontinuous Galerkin finite element method (DGFEM) in the time-indepentent domain. The main aim of this work is the study of this problem in time-dependent domains. For this reason the Arbitrary Lagrangian-Eulerian (ALE) method is presented. The governing equations are formulated in the ALE formulation and discretized in space and time by the DGFEM. Shortly we mention the shock capturing of the obtained scheme and the solution of the resulting linear system with the aid of Generalized Minimal Residual (GMRES) method. At the end of this work we present and compare results obtained by two different ALE formulations of the governing equations in the rectangular domain with a moving part of lower wall.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematikycs_CZ
dc.identifier.lisID990009859010106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV