Slavné neřešitelné problémy
Famous unsolvable problems.
Slavné neřešitelné problémy
bakalářská práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/17032/thumbnail.png?sequence=7&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/17032Identifikátory
SIS: 47126
Kolekce
- Kvalifikační práce [11266]
Autor
Vedoucí práce
Oponent práce
Pick, Luboš
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
16. 9. 2008
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Slovenština
Známka
Výborně
Title: Famous nnsolvable problems Author: Michal Kesely Department,: Deportment of Mathematical Analysis Supervisor: RNDr. Dalibor Prazak, Ph.D. Supervisor's e-mail address; prazak^karlin.inff.cuni.cz Abst.ra.ct: In the present work we study three famous problems of antiquity (the Delian problem, the trisect,ion of an angle and the squaring of a. cir- cle), which turned to be nnsolvable much later. In the first chapter we will formalize the concept of Euclidean construction, prove few theorems about algebraic numbers and show an interesting connection between con- structible numbers and algebraic numbers. In the next, two chapters we will prove the insolvability of the Delia.ii problem and the trisection of an an- gle using the properties of constructible numbers. Furthermore in (.he third chapter we will mention some incorrect solutions of the trisection problem, In the last, chapter we will prove the existence of transcendental numbers, build an appropriate apparatus and finally we will prove the transcendence of two famous const.nnts - c and TV. The insolvabilityof the squaring problem is a direct, consequence of the transcendence of T\. Keywords: unsolvable problem, constrnctible. transcendental