Zobrazit minimální záznam

Famous unsolvable problems.
Slavné neřešitelné problémy
dc.contributor.advisorPražák, Dalibor
dc.creatorKesely, Michal
dc.date.accessioned2017-04-12T09:11:16Z
dc.date.available2017-04-12T09:11:16Z
dc.date.issued2008
dc.identifier.urihttp://hdl.handle.net/20.500.11956/17032
dc.description.abstractTitle: Famous nnsolvable problems Author: Michal Kesely Department,: Deportment of Mathematical Analysis Supervisor: RNDr. Dalibor Prazak, Ph.D. Supervisor's e-mail address; prazak^karlin.inff.cuni.cz Abst.ra.ct: In the present work we study three famous problems of antiquity (the Delian problem, the trisect,ion of an angle and the squaring of a. cir- cle), which turned to be nnsolvable much later. In the first chapter we will formalize the concept of Euclidean construction, prove few theorems about algebraic numbers and show an interesting connection between con- structible numbers and algebraic numbers. In the next, two chapters we will prove the insolvability of the Delia.ii problem and the trisection of an an- gle using the properties of constructible numbers. Furthermore in (.he third chapter we will mention some incorrect solutions of the trisection problem, In the last, chapter we will prove the existence of transcendental numbers, build an appropriate apparatus and finally we will prove the transcendence of two famous const.nnts - c and TV. The insolvabilityof the squaring problem is a direct, consequence of the transcendence of T\. Keywords: unsolvable problem, constrnctible. transcendentalen_US
dc.languageSlovenčinacs_CZ
dc.language.isosk_SK
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleSlavné neřešitelné problémysk_SK
dc.typebakalářská prácecs_CZ
dcterms.created2008
dcterms.dateAccepted2008-09-16
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId47126
dc.title.translatedFamous unsolvable problems.en_US
dc.title.translatedSlavné neřešitelné problémycs_CZ
dc.contributor.refereePick, Luboš
dc.identifier.aleph001000735
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enTitle: Famous nnsolvable problems Author: Michal Kesely Department,: Deportment of Mathematical Analysis Supervisor: RNDr. Dalibor Prazak, Ph.D. Supervisor's e-mail address; prazak^karlin.inff.cuni.cz Abst.ra.ct: In the present work we study three famous problems of antiquity (the Delian problem, the trisect,ion of an angle and the squaring of a. cir- cle), which turned to be nnsolvable much later. In the first chapter we will formalize the concept of Euclidean construction, prove few theorems about algebraic numbers and show an interesting connection between con- structible numbers and algebraic numbers. In the next, two chapters we will prove the insolvability of the Delia.ii problem and the trisection of an an- gle using the properties of constructible numbers. Furthermore in (.he third chapter we will mention some incorrect solutions of the trisection problem, In the last, chapter we will prove the existence of transcendental numbers, build an appropriate apparatus and finally we will prove the transcendence of two famous const.nnts - c and TV. The insolvabilityof the squaring problem is a direct, consequence of the transcendence of T\. Keywords: unsolvable problem, constrnctible. transcendentalen_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990010007350106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV