Izomorfní vlastnosti prostorů spojitých afinních funkcí
Isomorphic properties of spaces of continuous affine functions
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/17265Identifikátory
SIS: 45988
Kolekce
- Kvalifikační práce [11244]
Autor
Vedoucí práce
Oponent práce
Lukeš, Jaroslav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická analýza
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
22. 9. 2008
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
The thesis deals with Banach-Stone theorem, its modi cations and generalizations. The preface of the thesis contains a lot of well known results and useful assertions from such elds of mathematics as measury theory, functional analysis, topology and most importantly convex analysis. The second chapter pursues proofs of classical Banach-Stone theorem and Eilenberg theorem, which works in another context than the original theorem. Chapter number three contains contribution of A. Lazar, who proved variation of Banach-Stone theorem for afine functions on simplexes. The chapter follows with generalizations of his results and it is closed with our own slight generalization. The last chapter pays attention to "almost isometries". The chapter comes out from theorem proved by A. Amir and continues with improvements achieved by H.B. Cohen and C.-H. Chu. The last part includes our own contribution to the subject.