Zobrazit minimální záznam

Isomorphic properties of spaces of continuous affine functions
dc.contributor.advisorSpurný, Jiří
dc.creatorLudvík, Pavel
dc.date.accessioned2017-04-12T10:02:21Z
dc.date.available2017-04-12T10:02:21Z
dc.date.issued2008
dc.identifier.urihttp://hdl.handle.net/20.500.11956/17265
dc.description.abstractThe thesis deals with Banach-Stone theorem, its modi cations and generalizations. The preface of the thesis contains a lot of well known results and useful assertions from such elds of mathematics as measury theory, functional analysis, topology and most importantly convex analysis. The second chapter pursues proofs of classical Banach-Stone theorem and Eilenberg theorem, which works in another context than the original theorem. Chapter number three contains contribution of A. Lazar, who proved variation of Banach-Stone theorem for afine functions on simplexes. The chapter follows with generalizations of his results and it is closed with our own slight generalization. The last chapter pays attention to "almost isometries". The chapter comes out from theorem proved by A. Amir and continues with improvements achieved by H.B. Cohen and C.-H. Chu. The last part includes our own contribution to the subject.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleIzomorfní vlastnosti prostorů spojitých afinních funkcícs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2008
dcterms.dateAccepted2008-09-22
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId45988
dc.title.translatedIsomorphic properties of spaces of continuous affine functionsen_US
dc.contributor.refereeLukeš, Jaroslav
dc.identifier.aleph000999075
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThe thesis deals with Banach-Stone theorem, its modi cations and generalizations. The preface of the thesis contains a lot of well known results and useful assertions from such elds of mathematics as measury theory, functional analysis, topology and most importantly convex analysis. The second chapter pursues proofs of classical Banach-Stone theorem and Eilenberg theorem, which works in another context than the original theorem. Chapter number three contains contribution of A. Lazar, who proved variation of Banach-Stone theorem for afine functions on simplexes. The chapter follows with generalizations of his results and it is closed with our own slight generalization. The last chapter pays attention to "almost isometries". The chapter comes out from theorem proved by A. Amir and continues with improvements achieved by H.B. Cohen and C.-H. Chu. The last part includes our own contribution to the subject.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990009990750106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV