dc.contributor.advisor | Nagy, Stanislav | |
dc.creator | Bočinec, Filip | |
dc.date.accessioned | 2022-10-04T18:01:07Z | |
dc.date.available | 2022-10-04T18:01:07Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/175662 | |
dc.description.abstract | In this thesis we explore a theorem from real analysis and geometry called Anderson's theorem. It concerns an integral inequality for symmetric quasi-concave functions, where the integration is done over a symmetric convex set. A thorough proof of Anderson's theorem is given. In addition, we investigate cases in which equality or strict inequality occurs. While studying this topic, we come across some problems in published papers and we try to clarify them. Furthermore, we explore possible extensions of the theorem. In particular, results involving group invariance and theory of s-concave functions are mentioned. As outlined in the final part of the thesis, Anderson's theorem is a useful and widely used tool in multivariate statistics. 1 | en_US |
dc.description.abstract | V tejto práci sa budeme zaoberať tvrdením z oblasti reálnej analýzy a geometrie s názvom Andersonova veta. Jedná sa o integrálnu nerovnosť pre symetrické kvázikonkávne funkcie, kde sa integruje cez symetrické konvexné množiny. Andersonovu vetu dôkladne dokážeme. Budeme skúmať, kedy v Andersonovej vete nastane rovnosť a kedy naopak ostrá nerovnosť. Pri štúdiu tejto otázky narazíme na isté problémy v publikovaných vý- sledkoch, ktoré sa pokúsime vyjasniť. V práci sa tiež budeme zaoberať možnými rozšíreni- ami Andersonovej vety. Konkrétne uvedieme výsledky využívajúce grupovú invarianciu a teóriu s-konkávnych funkcií. Ako naznačíme v závere práce, Andersonova veta je užitočný a často používaný nástroj v mnohorozmernej štatistike. 1 | cs_CZ |
dc.language | Slovenčina | cs_CZ |
dc.language.iso | sk_SK | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | unimodality|integral|Brunn-Minkowski inequality|convexity|multivariate measure | en_US |
dc.subject | unimodalita|integrál|Brunn-Minkowského nerovnovst|konvexita|vícerozměrná míra | cs_CZ |
dc.title | Andersonova veta | sk_SK |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2022 | |
dcterms.dateAccepted | 2022-09-07 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 235985 | |
dc.title.translated | Anderson's theorem | en_US |
dc.title.translated | Andersonova věta | cs_CZ |
dc.contributor.referee | Lachout, Petr | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | General Mathematics | en_US |
thesis.degree.program | Obecná matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Obecná matematika | cs_CZ |
uk.degree-program.en | General Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V tejto práci sa budeme zaoberať tvrdením z oblasti reálnej analýzy a geometrie s názvom Andersonova veta. Jedná sa o integrálnu nerovnosť pre symetrické kvázikonkávne funkcie, kde sa integruje cez symetrické konvexné množiny. Andersonovu vetu dôkladne dokážeme. Budeme skúmať, kedy v Andersonovej vete nastane rovnosť a kedy naopak ostrá nerovnosť. Pri štúdiu tejto otázky narazíme na isté problémy v publikovaných vý- sledkoch, ktoré sa pokúsime vyjasniť. V práci sa tiež budeme zaoberať možnými rozšíreni- ami Andersonovej vety. Konkrétne uvedieme výsledky využívajúce grupovú invarianciu a teóriu s-konkávnych funkcií. Ako naznačíme v závere práce, Andersonova veta je užitočný a často používaný nástroj v mnohorozmernej štatistike. 1 | cs_CZ |
uk.abstract.en | In this thesis we explore a theorem from real analysis and geometry called Anderson's theorem. It concerns an integral inequality for symmetric quasi-concave functions, where the integration is done over a symmetric convex set. A thorough proof of Anderson's theorem is given. In addition, we investigate cases in which equality or strict inequality occurs. While studying this topic, we come across some problems in published papers and we try to clarify them. Furthermore, we explore possible extensions of the theorem. In particular, results involving group invariance and theory of s-concave functions are mentioned. As outlined in the final part of the thesis, Anderson's theorem is a useful and widely used tool in multivariate statistics. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |