EM algorithm for truncated Gaussian mixtures
EM algoritmus pro useknuté gaussovské směsi
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/176140Identifikátory
SIS: 204939
Kolekce
- Kvalifikační práce [11242]
Autor
Vedoucí práce
Oponent práce
Nagy, Stanislav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Pravděpodobnost, matematická statistika a ekonometrie
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
12. 9. 2022
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Dobře
Klíčová slova (česky)
EM algoritmus, neúplná pozorování, směs rozdělení, mnohorozměrné normální rozděleníKlíčová slova (anglicky)
EM algorithm, truncated observations, mixture distribution, multivariate normal distributionIterativní algoritmus expectation-maximization je často používán pro odhad parametrů při práci s chybějícími informacemi. Taková situace může přirozeně nastat v případě, kdy data pozorujeme na ohraničeném okně. Tato práce se zaměřuje na aplikaci EM algoritmu pro useknuté gaussovské směsi a porovnává navržený algoritmus s přístupem z článku Lee a Scott [2012], který využívá heuristické zjednodušení a není dostatečně matematicky podložen. Chování navrženého algoritmu je také porovnáno s postupem z článku za pomoci simulačních studií a analýzy reálných dat. Práce také poskytuje implementaci EM algoritmu pro useknuté gaussovské směsi v jazyku Python.
The expectation-maximization iterative algorithm is widely used in parameter estimation when dealing with missing information. Such a situation can naturally arise when we observe the data of our interest on a bounded observation window. This thesis focuses on the application of the EM algorithm for truncated Gaussian mixtures and compares the proposed algorithm with the approach in a previously published article, see Lee and Scott [2012], where it uses a heuristic simplification and is not sufficiently supported mathematically. We also compare the behavior of the proposed algorithm with the procedure from the article in a series of simulated experiments, as well as in analyzing a real dataset. We also provide Python implementation of the EM algorithm for truncated Gaussian mixtures.