dc.contributor.advisor | Dvořák, Jiří | |
dc.creator | Nguyenová, Adéla | |
dc.date.accessioned | 2022-10-04T18:02:46Z | |
dc.date.available | 2022-10-04T18:02:46Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/176140 | |
dc.description.abstract | The expectation-maximization iterative algorithm is widely used in parameter estimation when dealing with missing information. Such a situation can naturally arise when we observe the data of our interest on a bounded observation window. This thesis focuses on the application of the EM algorithm for truncated Gaussian mixtures and compares the proposed algorithm with the approach in a previously published article, see Lee and Scott [2012], where it uses a heuristic simplification and is not sufficiently supported mathematically. We also compare the behavior of the proposed algorithm with the procedure from the article in a series of simulated experiments, as well as in analyzing a real dataset. We also provide Python implementation of the EM algorithm for truncated Gaussian mixtures. | en_US |
dc.description.abstract | Iterativní algoritmus expectation-maximization je často používán pro odhad parametrů při práci s chybějícími informacemi. Taková situace může přirozeně nastat v případě, kdy data pozorujeme na ohraničeném okně. Tato práce se zaměřuje na aplikaci EM algoritmu pro useknuté gaussovské směsi a porovnává navržený algoritmus s přístupem z článku Lee a Scott [2012], který využívá heuristické zjednodušení a není dostatečně matematicky podložen. Chování navrženého algoritmu je také porovnáno s postupem z článku za pomoci simulačních studií a analýzy reálných dat. Práce také poskytuje implementaci EM algoritmu pro useknuté gaussovské směsi v jazyku Python. | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | EM algorithm | en_US |
dc.subject | truncated observations | en_US |
dc.subject | mixture distribution | en_US |
dc.subject | multivariate normal distribution | en_US |
dc.subject | EM algoritmus | cs_CZ |
dc.subject | neúplná pozorování | cs_CZ |
dc.subject | směs rozdělení | cs_CZ |
dc.subject | mnohorozměrné normální rozdělení | cs_CZ |
dc.title | EM algorithm for truncated Gaussian mixtures | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2022 | |
dcterms.dateAccepted | 2022-09-12 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 204939 | |
dc.title.translated | EM algoritmus pro useknuté gaussovské směsi | cs_CZ |
dc.contributor.referee | Nagy, Stanislav | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Probability, mathematical statistics and econometrics | en_US |
thesis.degree.discipline | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.degree-discipline.en | Probability, mathematical statistics and econometrics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Dobře | cs_CZ |
thesis.grade.en | Good | en_US |
uk.abstract.cs | Iterativní algoritmus expectation-maximization je často používán pro odhad parametrů při práci s chybějícími informacemi. Taková situace může přirozeně nastat v případě, kdy data pozorujeme na ohraničeném okně. Tato práce se zaměřuje na aplikaci EM algoritmu pro useknuté gaussovské směsi a porovnává navržený algoritmus s přístupem z článku Lee a Scott [2012], který využívá heuristické zjednodušení a není dostatečně matematicky podložen. Chování navrženého algoritmu je také porovnáno s postupem z článku za pomoci simulačních studií a analýzy reálných dat. Práce také poskytuje implementaci EM algoritmu pro useknuté gaussovské směsi v jazyku Python. | cs_CZ |
uk.abstract.en | The expectation-maximization iterative algorithm is widely used in parameter estimation when dealing with missing information. Such a situation can naturally arise when we observe the data of our interest on a bounded observation window. This thesis focuses on the application of the EM algorithm for truncated Gaussian mixtures and compares the proposed algorithm with the approach in a previously published article, see Lee and Scott [2012], where it uses a heuristic simplification and is not sufficiently supported mathematically. We also compare the behavior of the proposed algorithm with the procedure from the article in a series of simulated experiments, as well as in analyzing a real dataset. We also provide Python implementation of the EM algorithm for truncated Gaussian mixtures. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
thesis.grade.code | 3 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |