Zobrazit minimální záznam

Výroková logika a algebra
dc.contributor.advisorKrajíček, Jan
dc.creatorPolach, František
dc.date.accessioned2017-04-12T11:47:41Z
dc.date.available2017-04-12T11:47:41Z
dc.date.issued2008
dc.identifier.urihttp://hdl.handle.net/20.500.11956/17708
dc.description.abstractAlgebraic proof systems of which the most important are the polynomial calculus and the Nullstellensatz proof system are proof systems that use algebraic means for proving propositional tautologies - they are based on polynomial identities over (commutative) rings. Razborov [9] have proved a non-trivial lower bound on degree for polynomia calculus proofs of the tautologies (a set of polynomials) that express the pigeonhole principle over any field. This work gathers present important results for algebraic proof systems and generalizes the Razborov's construction used in his proof of the lower bound to another set of polynomials. We explicitly describe the basis of the vector space of polynomials that are derivable by a small degree polynomial calculus proof from the tautologies that express a variant of the pigeonhole principle (that generalizes the principle for multifunctions).en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleVýroková logika a algebraen_US
dc.typediplomová prácecs_CZ
dcterms.created2008
dcterms.dateAccepted2008-09-10
dc.description.departmentKatedra algebrycs_CZ
dc.description.departmentDepartment of Algebraen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId46774
dc.title.translatedVýroková logika a algebracs_CZ
dc.contributor.refereePudlák, Pavel
dc.identifier.aleph001452801
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMatematické metody informační bezpečnostics_CZ
thesis.degree.disciplineMathematical methods of information securityen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické metody informační bezpečnostics_CZ
uk.degree-discipline.enMathematical methods of information securityen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enAlgebraic proof systems of which the most important are the polynomial calculus and the Nullstellensatz proof system are proof systems that use algebraic means for proving propositional tautologies - they are based on polynomial identities over (commutative) rings. Razborov [9] have proved a non-trivial lower bound on degree for polynomia calculus proofs of the tautologies (a set of polynomials) that express the pigeonhole principle over any field. This work gathers present important results for algebraic proof systems and generalizes the Razborov's construction used in his proof of the lower bound to another set of polynomials. We explicitly describe the basis of the vector space of polynomials that are derivable by a small degree polynomial calculus proof from the tautologies that express a variant of the pigeonhole principle (that generalizes the principle for multifunctions).en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
dc.identifier.lisID990014528010106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV