Zobrazit minimální záznam

Nediagonální uspořádaná Ramseyova čísla
dc.contributor.advisorBalko, Martin
dc.creatorPoljak, Marian
dc.date.accessioned2023-07-24T19:19:07Z
dc.date.available2023-07-24T19:19:07Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/182079
dc.description.abstractWe study ordered Ramsey numbers, an analogue of the classical Ramsey numbers for graphs with linearly ordered vertex sets. Inspired by a problem posed by Conlon, Fox, Lee and Sudakov, we focus on ordered Ramsey numbers of ordered matchings M< versus triangles. We generalize their lower bound on r<(M< , K< 3 ) for ordered matchings with any fixed interval chromatic number. We also analyze an upper bound on r<(M< , K< 3 ) for almost all ordered matchings M< with interval chromatic number 2 obtained by Rohatgi and improve it from O(n24/13 ) to O(n7/4 ). 1en_US
dc.description.abstractV práci studujeme uspořádaná Ramseyova čísla, která jsou analogií klasických Ram- seyových čísel pro grafy s lineárně uspořádanými vrcholy. Motivováni problémem od autorů Conlon, Fox, Lee a Sudakov se zabýváme uspořádanými Ramseyovými čísly pro uspořádaná párování M< vůči trojúhelníku. Zobecníme jejich dolní odhad čísla r<(M< , K< 3 ) pro uspořádaná párování s libovolným pevně zvoleným intervalovým chro- matickým číslem. Také zlepšíme horní odhad čísla r<(M< , K< 3 ) pro téměř všechna uspořádaná párování s intervalovým chromatickým číslem 2, který dokázal Rohatgi, z O(n24/13 ) na O(n7/4 ). 1cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectordered graph|ordered Ramsey numbers|Ramsey theory|off-diagonal Ramsey numbersen_US
dc.subjectuspořádaný graf|uspořádaná Ramseyova čísla|Ramseyova teorie|nediagonální Ramseyova číslacs_CZ
dc.titleOff-diagonal ordered Ramsey numbersen_US
dc.typediplomová prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-06-14
dc.description.departmentKatedra aplikované matematikycs_CZ
dc.description.departmentDepartment of Applied Mathematicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId234869
dc.title.translatedNediagonální uspořádaná Ramseyova číslacs_CZ
dc.contributor.refereeHubička, Jan
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineInformatika - Diskrétní modely a algoritmycs_CZ
thesis.degree.disciplineComputer Science - Discrete Models and Algorithmsen_US
thesis.degree.programInformatika - Diskrétní modely a algoritmycs_CZ
thesis.degree.programComputer Science - Discrete Models and Algorithmsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra aplikované matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Applied Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csInformatika - Diskrétní modely a algoritmycs_CZ
uk.degree-discipline.enComputer Science - Discrete Models and Algorithmsen_US
uk.degree-program.csInformatika - Diskrétní modely a algoritmycs_CZ
uk.degree-program.enComputer Science - Discrete Models and Algorithmsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV práci studujeme uspořádaná Ramseyova čísla, která jsou analogií klasických Ram- seyových čísel pro grafy s lineárně uspořádanými vrcholy. Motivováni problémem od autorů Conlon, Fox, Lee a Sudakov se zabýváme uspořádanými Ramseyovými čísly pro uspořádaná párování M< vůči trojúhelníku. Zobecníme jejich dolní odhad čísla r<(M< , K< 3 ) pro uspořádaná párování s libovolným pevně zvoleným intervalovým chro- matickým číslem. Také zlepšíme horní odhad čísla r<(M< , K< 3 ) pro téměř všechna uspořádaná párování s intervalovým chromatickým číslem 2, který dokázal Rohatgi, z O(n24/13 ) na O(n7/4 ). 1cs_CZ
uk.abstract.enWe study ordered Ramsey numbers, an analogue of the classical Ramsey numbers for graphs with linearly ordered vertex sets. Inspired by a problem posed by Conlon, Fox, Lee and Sudakov, we focus on ordered Ramsey numbers of ordered matchings M< versus triangles. We generalize their lower bound on r<(M< , K< 3 ) for ordered matchings with any fixed interval chromatic number. We also analyze an upper bound on r<(M< , K< 3 ) for almost all ordered matchings M< with interval chromatic number 2 obtained by Rohatgi and improve it from O(n24/13 ) to O(n7/4 ). 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV