Group Detection in Crowds Using Spatiotemporal Data
Detekce skupin v davech pomocí časoprostorových dat
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/188480Identifikátory
SIS: 266570
Kolekce
- Kvalifikační práce [11244]
Autor
Vedoucí práce
Oponent práce
Neruda, Roman
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Umělá inteligence
Katedra / ústav / klinika
Informatický ústav Univerzity Karlovy
Datum obhajoby
13. 2. 2024
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
chování davu|skupiny chodců|detekce skupin|clusteringKlíčová slova (anglicky)
crowd behavior|pedestrian groups|group detection|clusteringTato diplomová práce se zabývá detekcí skupin v davech a představuje algoritmus obohacený o sociologické poznatky o obvyklých formacích skupin mezi chodci. Navrhovaný algoritmus prokazuje srovnatelnou úspěšnost s existujícími řešeními - Time-sequence DBSCAN a Agglomerative Hierarchical Clustering, s využitím datasetu DIAMOR pro testování a porovnání. Kromě toho představujeme validační nástroj, který potenciálně dokáže zdokonalit výsledky existujících algoritmů na základě kritéria pro tvar skupiny, což vede k zlepšení přesnosti identifikace skupin. Klíčová slova: detekce skupin; clustering; analýza tvaru skupin; chování chodců;
This thesis addresses the challenge of social group detection in crowds, presenting an algorithm informed by sociological insights into common group formations among pedestrians. Our proposed algorithm demonstrates comparable performance to existing solutions - Time-sequence DBSCAN and Agglomerative Hierarchical Clustering with Hausdorff Distance, using the DIAMOR dataset for testing and comparison. Additionally, we introduce a validator tool potentially capable of refining results from existing algorithms based on a group shape criterion, leading to improved accuracy in identifying groups. Keywords: groups detection; clustering; group shape analysis; pedestrian behavior;