Zobrazit minimální záznam

Detekce skupin v davech pomocí časoprostorových dat
dc.contributor.advisorHartman, David
dc.creatorŘíha, David
dc.date.accessioned2024-04-08T10:45:42Z
dc.date.available2024-04-08T10:45:42Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/20.500.11956/188480
dc.description.abstractThis thesis addresses the challenge of social group detection in crowds, presenting an algorithm informed by sociological insights into common group formations among pedestrians. Our proposed algorithm demonstrates comparable performance to existing solutions - Time-sequence DBSCAN and Agglomerative Hierarchical Clustering with Hausdorff Distance, using the DIAMOR dataset for testing and comparison. Additionally, we introduce a validator tool potentially capable of refining results from existing algorithms based on a group shape criterion, leading to improved accuracy in identifying groups. Keywords: groups detection; clustering; group shape analysis; pedestrian behavior;en_US
dc.description.abstractTato diplomová práce se zabývá detekcí skupin v davech a představuje algoritmus obohacený o sociologické poznatky o obvyklých formacích skupin mezi chodci. Navrhovaný algoritmus prokazuje srovnatelnou úspěšnost s existujícími řešeními - Time-sequence DBSCAN a Agglomerative Hierarchical Clustering, s využitím datasetu DIAMOR pro testování a porovnání. Kromě toho představujeme validační nástroj, který potenciálně dokáže zdokonalit výsledky existujících algoritmů na základě kritéria pro tvar skupiny, což vede k zlepšení přesnosti identifikace skupin. Klíčová slova: detekce skupin; clustering; analýza tvaru skupin; chování chodců;cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectchování davu|skupiny chodců|detekce skupin|clusteringcs_CZ
dc.subjectcrowd behavior|pedestrian groups|group detection|clusteringen_US
dc.titleGroup Detection in Crowds Using Spatiotemporal Datacs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2024
dcterms.dateAccepted2024-02-13
dc.description.departmentComputer Science Institute of Charles Universityen_US
dc.description.departmentInformatický ústav Univerzity Karlovycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId266570
dc.title.translatedDetekce skupin v davech pomocí časoprostorových daten_US
dc.contributor.refereeNeruda, Roman
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineArtificial Intelligenceen_US
thesis.degree.disciplineUmělá inteligencecs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Informatický ústav Univerzity Karlovycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Computer Science Institute of Charles Universityen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csUmělá inteligencecs_CZ
uk.degree-discipline.enArtificial Intelligenceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csTato diplomová práce se zabývá detekcí skupin v davech a představuje algoritmus obohacený o sociologické poznatky o obvyklých formacích skupin mezi chodci. Navrhovaný algoritmus prokazuje srovnatelnou úspěšnost s existujícími řešeními - Time-sequence DBSCAN a Agglomerative Hierarchical Clustering, s využitím datasetu DIAMOR pro testování a porovnání. Kromě toho představujeme validační nástroj, který potenciálně dokáže zdokonalit výsledky existujících algoritmů na základě kritéria pro tvar skupiny, což vede k zlepšení přesnosti identifikace skupin. Klíčová slova: detekce skupin; clustering; analýza tvaru skupin; chování chodců;cs_CZ
uk.abstract.enThis thesis addresses the challenge of social group detection in crowds, presenting an algorithm informed by sociological insights into common group formations among pedestrians. Our proposed algorithm demonstrates comparable performance to existing solutions - Time-sequence DBSCAN and Agglomerative Hierarchical Clustering with Hausdorff Distance, using the DIAMOR dataset for testing and comparison. Additionally, we introduce a validator tool potentially capable of refining results from existing algorithms based on a group shape criterion, leading to improved accuracy in identifying groups. Keywords: groups detection; clustering; group shape analysis; pedestrian behavior;en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Informatický ústav Univerzity Karlovycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV