Vychylující teorie a reflexní funktory
Tilting theory and reflection functors
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/191465Identifikátory
SIS: 270106
Kolekce
- Kvalifikační práce [11240]
Autor
Vedoucí práce
Oponent práce
Růžička, Pavel
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
19. 6. 2024
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
toulec|reflexní funktor|vychylující teorie|Brennerové-Butlerova větaKlíčová slova (anglicky)
quiver|reflection functor|tilting theory|Brenner-Butler theoremV této práci se zabýváme klasickou vychylující teorií. V kompilační části představu- jeme její základní pojmy a dokazujeme dva základní výsledky, totiž Brennerové-Butlerovu větu a Bongartzovo lemma. Oproti předloze, standardní učebnici Assema, Simsona a Skowronského, jsme důkazy rozepsali a doplnili odkazy na užitá homologická lemmata a tím text zpřístupnili i čtenáři v homologické algebře nejistému. Druhá část práce se zabývá konkrétním případem Brennerové-Butlerovy korespon- dence realizované reflexními funktory v acyklických toulcích. Vyložili jsme nutnou ter- minologii a dokázali některá základní tvrzení. Formulovali jsme a dokázali, jaké podoby Brennerové-Butlerovy korespondence v tomto kontextu nabývá.
In this thesis we familiarize the reader with the fundamental notions of tilting theory. Building on those, we formulate and prove two major results of classical tilting theory, Brenner-Butler theorem and Bongartz lemma. We base our exposition heavily on the classical textbook of Assem, Simson and Skowronski. A reader unsure of their proficiency in homological algebra may appreciate our efforts to wholly uncover the homological re- sults which come to play in the proofs. In the second part of the thesis we investigate a particular case of acyclic quivers. It turns out there is a delightful instance of Brenner-Butler correspondence in connection with reflection functors. We introduce the fundamental notions and basic facts on repre- sentations of quivers. Next we prove how the correspondence looks like.