dc.contributor.advisor | Šťovíček, Jan | |
dc.creator | Pásek, Marek | |
dc.date.accessioned | 2024-11-29T17:55:33Z | |
dc.date.available | 2024-11-29T17:55:33Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/191465 | |
dc.description.abstract | V této práci se zabýváme klasickou vychylující teorií. V kompilační části představu- jeme její základní pojmy a dokazujeme dva základní výsledky, totiž Brennerové-Butlerovu větu a Bongartzovo lemma. Oproti předloze, standardní učebnici Assema, Simsona a Skowronského, jsme důkazy rozepsali a doplnili odkazy na užitá homologická lemmata a tím text zpřístupnili i čtenáři v homologické algebře nejistému. Druhá část práce se zabývá konkrétním případem Brennerové-Butlerovy korespon- dence realizované reflexními funktory v acyklických toulcích. Vyložili jsme nutnou ter- minologii a dokázali některá základní tvrzení. Formulovali jsme a dokázali, jaké podoby Brennerové-Butlerovy korespondence v tomto kontextu nabývá. | cs_CZ |
dc.description.abstract | In this thesis we familiarize the reader with the fundamental notions of tilting theory. Building on those, we formulate and prove two major results of classical tilting theory, Brenner-Butler theorem and Bongartz lemma. We base our exposition heavily on the classical textbook of Assem, Simson and Skowronski. A reader unsure of their proficiency in homological algebra may appreciate our efforts to wholly uncover the homological re- sults which come to play in the proofs. In the second part of the thesis we investigate a particular case of acyclic quivers. It turns out there is a delightful instance of Brenner-Butler correspondence in connection with reflection functors. We introduce the fundamental notions and basic facts on repre- sentations of quivers. Next we prove how the correspondence looks like. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | quiver|reflection functor|tilting theory|Brenner-Butler theorem | en_US |
dc.subject | toulec|reflexní funktor|vychylující teorie|Brennerové-Butlerova věta | cs_CZ |
dc.title | Vychylující teorie a reflexní funktory | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2024 | |
dcterms.dateAccepted | 2024-06-19 | |
dc.description.department | Department of Algebra | en_US |
dc.description.department | Katedra algebry | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 270106 | |
dc.title.translated | Tilting theory and reflection functors | en_US |
dc.contributor.referee | Růžička, Pavel | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | General Mathematics | en_US |
thesis.degree.program | Obecná matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra algebry | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Algebra | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Obecná matematika | cs_CZ |
uk.degree-program.en | General Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V této práci se zabýváme klasickou vychylující teorií. V kompilační části představu- jeme její základní pojmy a dokazujeme dva základní výsledky, totiž Brennerové-Butlerovu větu a Bongartzovo lemma. Oproti předloze, standardní učebnici Assema, Simsona a Skowronského, jsme důkazy rozepsali a doplnili odkazy na užitá homologická lemmata a tím text zpřístupnili i čtenáři v homologické algebře nejistému. Druhá část práce se zabývá konkrétním případem Brennerové-Butlerovy korespon- dence realizované reflexními funktory v acyklických toulcích. Vyložili jsme nutnou ter- minologii a dokázali některá základní tvrzení. Formulovali jsme a dokázali, jaké podoby Brennerové-Butlerovy korespondence v tomto kontextu nabývá. | cs_CZ |
uk.abstract.en | In this thesis we familiarize the reader with the fundamental notions of tilting theory. Building on those, we formulate and prove two major results of classical tilting theory, Brenner-Butler theorem and Bongartz lemma. We base our exposition heavily on the classical textbook of Assem, Simson and Skowronski. A reader unsure of their proficiency in homological algebra may appreciate our efforts to wholly uncover the homological re- sults which come to play in the proofs. In the second part of the thesis we investigate a particular case of acyclic quivers. It turns out there is a delightful instance of Brenner-Butler correspondence in connection with reflection functors. We introduce the fundamental notions and basic facts on repre- sentations of quivers. Next we prove how the correspondence looks like. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra algebry | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |