Procesy slabé saturace v multipartitních hypergrafech
Weak saturation processes in multipartite hypergraphs
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/192078Identifikátory
SIS: 268508
Kolekce
- Kvalifikační práce [11214]
Autor
Vedoucí práce
Oponent práce
Tancer, Martin
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Informatika se specializací Obecná informatika
Katedra / ústav / klinika
Katedra aplikované matematiky
Datum obhajoby
28. 6. 2024
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
wsat|slabá saturácia|hypergraf|extremálna kombinatorikaKlíčová slova (anglicky)
wsat|weak saturation|hypergraph|extremal combinatoricsDané hypergrafy H a P, wsat(H, P) označuje najmenší počet hrán v podgrafe H s vlastnosťou, že chýbajúce hrany možno postupne pridať tak, že pridanie každej hrany vytvorí novú kópiu P. V roku 1985 Alon dokázal, že wsat(Kn, P)/n konverguje k vlastnej limite pre akýkoľvek graf P. Tuza sa v roku 1992 domnieval, že platí zobecnenie tejto vety pre r-uniformné hypergrafy a dokázali ho Shapira a Tyomkyn v roku 2021. V tejto práci používame metodológiu, ktorú zaviedli Shapira a Tyomkyn, aby sme dokázali podobnuú vetu, v ktorej H je úplný r-partitný r-uniformný hypergraf.
Given hypergraphs H and P, wsat(H, P) denotes the smallest number of edges in a subgraph of H with the property that the missing edges can be sequentially added such that the addition of every edge creates a new copy of P. In 1985 Alon proved that wsat(Kn, P)/n tends to a finite limit for any graph P. A generalisation of this Theorem to r-uniform hypergraphs was conjectured by Tuza in 1992 and proved by Shapira and Tyomkyn in 2021. In this thesis, we use the methodology introduced by Shapira and Tyomkyn to prove a similar theorem when H is a complete r-partite r- uniform hypergraph.