Permutace s předepsanými délkami cyklů
Permutations with prescribed cycle lengths
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/195753Identifikátory
SIS: 265822
Kolekce
- Kvalifikační práce [11220]
Autor
Vedoucí práce
Oponent práce
Šmíd, Dalibor
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematika se zaměřením na vzdělávání se sdruženým studiem Informatika se zaměřením na vzdělávání
Katedra / ústav / klinika
Katedra didaktiky matematiky
Datum obhajoby
15. 2. 2024
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
permutace|nezávislé cykly|telefonní čísla|involuce|exponenciální generující funkceKlíčová slova (anglicky)
permutation|disjoint cycles|telephone numbers|involution|exponential generating functionPráce se zabývá zkoumáním a počítáním permutací, jejichž cykly mají předepsané délky. V první části představíme třídu permutací složených pouze z jednocyklů a dvojcyklů a ukážeme některé související úlohy. Druhá část je věnována dalším třídám permutací a po- stupům, jak zjistit jejich počet. Vedle kombinatorického přístupu využíváme též analytický přístup pracující s tzv. exponenciálními generujícími funkcemi. 1
The thesis studies and calculates permutations whose cycles have prescribed lengths. The first part introduces a class of permutations whose cycles have lengths one and two, and presents several related problems. In the second part, we examine other classes of per- mutations as well as methods for calculating their number. In addition to a combinatorial approach, an analytical approach using exponential generating functions is shown. 1