Homogeneity of topological structures
Homogenita topologických struktur
diplomová práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/23307/thumbnail.png?sequence=7&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/23307Identifikátory
SIS: 49360
Kolekce
- Kvalifikační práce [11264]
Autor
Vedoucí práce
Oponent práce
Pyrih, Pavel
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematické struktury
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
16. 9. 2009
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
In the present work we study those compacti cations such that every autohomeomorphism of the base space can be continuously extended over the compacti cation. These are called H-compacti cations. We characterize them by several equivalent conditions and we prove that H-compacti cations of a given space form a complete upper semilattice which is a complete lattice when the given space is supposed to be locally compact. Next, we describe all H-compacti cations of discrete spaces as well as of countable locally compact spaces. It is shown that the only H-compacti cations of Euclidean spaces of dimension at least two are one-point compacti cation and the Cech-Stone compacti cation. Further we get that there are exactly 11 H-compacti cations of a countable sum of Euclidean spaces of dimension at least two and that there are exactly 26 H-compacti cations of a countable sum of real lines. These are all described and a Hasse diagram of a lattice they form is given.