dc.contributor.advisor | Hušek, Miroslav | |
dc.creator | Vejnar, Benjamin | |
dc.date.accessioned | 2017-04-19T20:12:25Z | |
dc.date.available | 2017-04-19T20:12:25Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/23307 | |
dc.description.abstract | In the present work we study those compacti cations such that every autohomeomorphism of the base space can be continuously extended over the compacti cation. These are called H-compacti cations. We characterize them by several equivalent conditions and we prove that H-compacti cations of a given space form a complete upper semilattice which is a complete lattice when the given space is supposed to be locally compact. Next, we describe all H-compacti cations of discrete spaces as well as of countable locally compact spaces. It is shown that the only H-compacti cations of Euclidean spaces of dimension at least two are one-point compacti cation and the Cech-Stone compacti cation. Further we get that there are exactly 11 H-compacti cations of a countable sum of Euclidean spaces of dimension at least two and that there are exactly 26 H-compacti cations of a countable sum of real lines. These are all described and a Hasse diagram of a lattice they form is given. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Homogeneity of topological structures | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2009 | |
dcterms.dateAccepted | 2009-09-16 | |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 49360 | |
dc.title.translated | Homogenita topologických struktur | cs_CZ |
dc.contributor.referee | Pyrih, Pavel | |
dc.identifier.aleph | 001450823 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Matematické struktury | cs_CZ |
thesis.degree.discipline | Mathematical structures | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematické struktury | cs_CZ |
uk.degree-discipline.en | Mathematical structures | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | In the present work we study those compacti cations such that every autohomeomorphism of the base space can be continuously extended over the compacti cation. These are called H-compacti cations. We characterize them by several equivalent conditions and we prove that H-compacti cations of a given space form a complete upper semilattice which is a complete lattice when the given space is supposed to be locally compact. Next, we describe all H-compacti cations of discrete spaces as well as of countable locally compact spaces. It is shown that the only H-compacti cations of Euclidean spaces of dimension at least two are one-point compacti cation and the Cech-Stone compacti cation. Further we get that there are exactly 11 H-compacti cations of a countable sum of Euclidean spaces of dimension at least two and that there are exactly 26 H-compacti cations of a countable sum of real lines. These are all described and a Hasse diagram of a lattice they form is given. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
dc.identifier.lisID | 990014508230106986 | |