Zobrazit minimální záznam

Frobenius tests of primality
dc.contributor.advisorDrápal, Aleš
dc.creatorHora, Jan
dc.date.accessioned2017-04-27T12:27:17Z
dc.date.available2017-04-27T12:27:17Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/36226
dc.description.abstractNázev práce: Frobeniovy testy prvočíselnosti Autor: Jan Hora Katedra (ústav): katedra algebry Vedoucí diplomové práce: prof. RNDr. Aleš Drápal, CSc. Dsc. e-mail vedoucího: drapal@karlin.mff.cuni.cz Abstrakt: V následující práci se zabýváme rozšířeným kvadratickým Frobeniovým testem prvočíselnosti. Studujeme důvody jeho funkčnosti, a jeho úspěšnost a výpočetní složitost. Zkonstruujeme okruh R(n, c), ve kterém test probíhá, a popíšeme jeho strukturu v závislosti na tom, zda testované číslo n je či není složené. Popíšeme algoritmus Frobeniova testu, a ukážeme, že test vždy uspěje, je-li n prvočíslem. Dále zjistíme, jaká je zaručená úspěšnost testu. Ukážeme, že test selže právě při výběru jistých prvků z množiny R(n, c), jejich množinu označíme G(n, c). Najdeme podmínky, které musí G(n, c) splňovat, a díky nim zjistíme, že pravděpodobnost selhání Frobeniova testu je nejvýše 1 24 . Poté rozborem složitosti jednotlivých částí algoritmu zjistíme, že k provedení jednoho cyklu Frobeniova testu stačí přibližně 2 log n násobení v Zn. Nakonec porovnáme teoretické odhady s prakticky získanými výsledky. Klíčová slova: test prvočíselnosti, Frobeniův automorfismus, cyklická grupa, odmocniny z jedné 1cs_CZ
dc.description.abstractTitle: Frobenius primality tests Author: Jan Hora Department: Department of algebra Supervisor: prof. RNDr. Aleš Drápal, CSc. Dsc. Supervisor's e-mail address: drapal@karlin.mff.cuni.cz Abstract: In the present work we study Extended Quadratic Frobenius primality test. We study its functionality, error probability and taken time. We will define ring R(n, c), in which the test works. We will describe its structure depending up primality of tested number n, and algorithm of Frobenius test. We will show, that test succeeds anytime the tested number n is prime. We will study the upper bound for error probability of the test. We will show that test fails iff certain elements of set R(n, c) are chosen, Set of that elements will be denoted G(n, c). We will find conditions that G(n, c) must fulfil, and with them we will discover, that Frobenius test eroor probability is at most 1 24 . We will analyse individual parts of algorithm and discover, that one cyclus of Frobenius test can be done with approximately 2 log n multiplications in Zn. Finaly the teoretical estimates will be compared with practical results. Keywords: primality test, Frobenius automorfism, cyklic group, roots of one 1en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleFrobeniovy testy prvočíselnostics_CZ
dc.typediplomová prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-05-19
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId47714
dc.title.translatedFrobenius tests of primalityen_US
dc.contributor.refereeHolub, Štěpán
dc.identifier.aleph001362528
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical methods of information securityen_US
thesis.degree.disciplineMatematické metody informační bezpečnostics_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické metody informační bezpečnostics_CZ
uk.degree-discipline.enMathematical methods of information securityen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csNázev práce: Frobeniovy testy prvočíselnosti Autor: Jan Hora Katedra (ústav): katedra algebry Vedoucí diplomové práce: prof. RNDr. Aleš Drápal, CSc. Dsc. e-mail vedoucího: drapal@karlin.mff.cuni.cz Abstrakt: V následující práci se zabýváme rozšířeným kvadratickým Frobeniovým testem prvočíselnosti. Studujeme důvody jeho funkčnosti, a jeho úspěšnost a výpočetní složitost. Zkonstruujeme okruh R(n, c), ve kterém test probíhá, a popíšeme jeho strukturu v závislosti na tom, zda testované číslo n je či není složené. Popíšeme algoritmus Frobeniova testu, a ukážeme, že test vždy uspěje, je-li n prvočíslem. Dále zjistíme, jaká je zaručená úspěšnost testu. Ukážeme, že test selže právě při výběru jistých prvků z množiny R(n, c), jejich množinu označíme G(n, c). Najdeme podmínky, které musí G(n, c) splňovat, a díky nim zjistíme, že pravděpodobnost selhání Frobeniova testu je nejvýše 1 24 . Poté rozborem složitosti jednotlivých částí algoritmu zjistíme, že k provedení jednoho cyklu Frobeniova testu stačí přibližně 2 log n násobení v Zn. Nakonec porovnáme teoretické odhady s prakticky získanými výsledky. Klíčová slova: test prvočíselnosti, Frobeniův automorfismus, cyklická grupa, odmocniny z jedné 1cs_CZ
uk.abstract.enTitle: Frobenius primality tests Author: Jan Hora Department: Department of algebra Supervisor: prof. RNDr. Aleš Drápal, CSc. Dsc. Supervisor's e-mail address: drapal@karlin.mff.cuni.cz Abstract: In the present work we study Extended Quadratic Frobenius primality test. We study its functionality, error probability and taken time. We will define ring R(n, c), in which the test works. We will describe its structure depending up primality of tested number n, and algorithm of Frobenius test. We will show, that test succeeds anytime the tested number n is prime. We will study the upper bound for error probability of the test. We will show that test fails iff certain elements of set R(n, c) are chosen, Set of that elements will be denoted G(n, c). We will find conditions that G(n, c) must fulfil, and with them we will discover, that Frobenius test eroor probability is at most 1 24 . We will analyse individual parts of algorithm and discover, that one cyclus of Frobenius test can be done with approximately 2 log n multiplications in Zn. Finaly the teoretical estimates will be compared with practical results. Keywords: primality test, Frobenius automorfism, cyklic group, roots of one 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
dc.identifier.lisID990013625280106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV