Zobrazit minimální záznam

The Depth of Functional Data.
Hloubka funkcionálních dat
dc.contributor.advisorHlubinka, Daniel
dc.creatorNagy, Stanislav
dc.date.accessioned2017-04-27T12:33:05Z
dc.date.available2017-04-27T12:33:05Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/36245
dc.description.abstractHĺbková funkcia (resp. funkcionál) je moderný neparametrický nástroj štatistickej analýzy (konečnorozmerných) dát s množstvom praktických aplikácií. V práci sa zameriame na možnosti rozšírenia konceptu hĺbky na prípad funkcionálnych dát. V prípade konečnorozmerných funkcionálnych dát využijeme izomorfizmus priestoru funkcií a konečnorozmerného euklidovského priestoru, čo nám umožní zaviesť indukované hĺbky funkcionálnych dát. Dokážeme tvrdenie o vlastnostiach indukovaných hĺbok a na príkladoch si ukážeme možnosti a obmedzenia ich praktického použitia. Ďalej popíšeme a na jednoduchých príkladoch ukážeme výhody aj nevýhody zavedených hĺbkových funkcionálov používaných v literatúre (Fraimanových-Munizovej hĺbok a pásových hĺbok). Na odstránenie najväčšej vyvstávajúcej nevýhody známych hĺbok pre funkcionálne dáta zavedieme novú, K-pásovú hĺbku založenú na rozšírení inferencie zo spojitých na hladké funkcie. Odvodíme niekoľko dôležitých vlastností a na záverečnej simulačnej štúdií ukážeme na príklade riadenej klasifikácie funkcionálnych dát praktickú výhodnosť nového prístupu oproti predchádzajúcim. Na záver porovnáme výpočetnú náročnosť všetkých predstavených hĺbkových funkcionálov.cs_CZ
dc.description.abstractThe depth function (functional) is a modern nonparametric statistical analysis tool for (finite-dimensional) data with lots of practical applications. In the present work we focus on the possibilities of the extension of the depth concept onto a functional data case. In the case of finite-dimensional functional data the isomorphism between the functional space and the finite-dimensional Euclidean space will be utilized in order to introduce the induced functional data depths. A theorem about induced depths' properties will be proven and on several examples the possibilities and restraints of it's practical applications will be shown. Moreover, we describe and demonstrate the advantages and disadvantages of the established depth functionals used in the literature (Fraiman-Muniz depths and band depths). In order to facilitate the outcoming drawbacks of known depths, we propose new, K-band depth based on the inference extension from continuous to smooth functions. Several important properties of the K-band depth will be derived. On a final supervised classification simulation study the reasonability of practical use of the new approach will be shown. As a conclusion, the computational complexity of all presented depth functionals will be compared.en_US
dc.languageSlovenčinacs_CZ
dc.language.isosk_SK
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjecthĺbka dátcs_CZ
dc.subjectfunkcionálne dátacs_CZ
dc.subjectklasifikácia dátcs_CZ
dc.subjectdata depthen_US
dc.subjectfunctional dataen_US
dc.subjectdata classificationen_US
dc.titleHloubka funkcionálních datsk_SK
dc.typediplomová prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-05-09
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId75047
dc.title.translatedThe Depth of Functional Data.en_US
dc.title.translatedHloubka funkcionálních datcs_CZ
dc.contributor.refereeOmelka, Marek
dc.identifier.aleph001360027
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csHĺbková funkcia (resp. funkcionál) je moderný neparametrický nástroj štatistickej analýzy (konečnorozmerných) dát s množstvom praktických aplikácií. V práci sa zameriame na možnosti rozšírenia konceptu hĺbky na prípad funkcionálnych dát. V prípade konečnorozmerných funkcionálnych dát využijeme izomorfizmus priestoru funkcií a konečnorozmerného euklidovského priestoru, čo nám umožní zaviesť indukované hĺbky funkcionálnych dát. Dokážeme tvrdenie o vlastnostiach indukovaných hĺbok a na príkladoch si ukážeme možnosti a obmedzenia ich praktického použitia. Ďalej popíšeme a na jednoduchých príkladoch ukážeme výhody aj nevýhody zavedených hĺbkových funkcionálov používaných v literatúre (Fraimanových-Munizovej hĺbok a pásových hĺbok). Na odstránenie najväčšej vyvstávajúcej nevýhody známych hĺbok pre funkcionálne dáta zavedieme novú, K-pásovú hĺbku založenú na rozšírení inferencie zo spojitých na hladké funkcie. Odvodíme niekoľko dôležitých vlastností a na záverečnej simulačnej štúdií ukážeme na príklade riadenej klasifikácie funkcionálnych dát praktickú výhodnosť nového prístupu oproti predchádzajúcim. Na záver porovnáme výpočetnú náročnosť všetkých predstavených hĺbkových funkcionálov.cs_CZ
uk.abstract.enThe depth function (functional) is a modern nonparametric statistical analysis tool for (finite-dimensional) data with lots of practical applications. In the present work we focus on the possibilities of the extension of the depth concept onto a functional data case. In the case of finite-dimensional functional data the isomorphism between the functional space and the finite-dimensional Euclidean space will be utilized in order to introduce the induced functional data depths. A theorem about induced depths' properties will be proven and on several examples the possibilities and restraints of it's practical applications will be shown. Moreover, we describe and demonstrate the advantages and disadvantages of the established depth functionals used in the literature (Fraiman-Muniz depths and band depths). In order to facilitate the outcoming drawbacks of known depths, we propose new, K-band depth based on the inference extension from continuous to smooth functions. Several important properties of the K-band depth will be derived. On a final supervised classification simulation study the reasonability of practical use of the new approach will be shown. As a conclusion, the computational complexity of all presented depth functionals will be compared.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990013600270106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV