Slabá řešení pro třídu nelineárních integrodiferenciálních rovnic
Slabá řešení pro třídu nelineárních integrodiferenciálních rovnic
diplomová práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/39763/thumbnail.png?sequence=7&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/39763Identifikátory
SIS: 81078
Kolekce
- Kvalifikační práce [11266]
Autor
Vedoucí práce
Oponent práce
Kaplický, Petr
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická analýza
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
31. 5. 2012
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Velmi dobře
Klíčová slova (česky)
Integrodiferenciální rovnice, nelinearity, existence řešení, regularitaKlíčová slova (anglicky)
Integrodifferential equations, nonlinearities, existence of a solution, regularityNázev práce: Slabá řešení pro třídu nelineárních integrodiferenciálních rovnic Autor: Ivan Soukup Katedra: Katedra matematické analýzy Vedoucí diplomové práce: RNDr. Tomáš Bárta, Ph.D. e-mail vedoucího: tomas.barta@mff.cuni.cz Abstrakt: Práce zkoumá systém evolučních nelineárních parciálních integro- diferenciálních rovnic ve třech prostorových dimenzích. Konkrétně studuje e- xistenci řešení systému uvedeném v [1] s Dirichletovou okrajovou podmínkou a počáteční podmínkou u0. Hlavní linie důkazu povedeme po vzoru důkazu v [9] a pokusíme se vyhnout komplikacím vyplývajícím z integrálního členu. Postup se skládá z aproximace konvektivního členu, aproximace potenciálů obou nelinearit kvadratickými funkcemi, důkazu existence aproximativního řešení a následně z navrácení se k původnímu problému pomocí regularity aproximativního řešení a vlastnostem nelinearit. Cílem je vylepšit výsledky získané v [1]. 1
Title: Weak solutions for a class of nonlinear integrodifferential equations Author: Ivan Soukup Department: Department of mathematical analysis Supervisor: RNDr. Tomáš Bárta, Ph.D. Supervisor's e-mail address: tomas.barta@mff.cuni.cz Abstract: The work investigates a system of evolutionary nonlinear partial integrodifferential equations in three dimensional space. In particular it stud- ies an existence of a solution to the system introduced in [1] with Dirichlet boundary condition and initial condition u0. We adopt the scheme of the proof from [9] and try to avoid the complications rising from the integral term. The procedure consists of an approximation of the convective term and an ap- proximation of the potentials of both nonlinearities using a quadratic function, proving the existence of the approximative solution and then returning to the original problem via regularity of the approximative solution and properties of the nonlinearities. The aim is to improve the results of the paper [1]. 1