Zobrazit minimální záznam

Slabá řešení pro třídu nelineárních integrodiferenciálních rovnic
dc.contributor.advisorBárta, Tomáš
dc.creatorSoukup, Ivan
dc.date.accessioned2017-05-06T16:29:44Z
dc.date.available2017-05-06T16:29:44Z
dc.date.issued2012
dc.identifier.urihttp://hdl.handle.net/20.500.11956/39763
dc.description.abstractNázev práce: Slabá řešení pro třídu nelineárních integrodiferenciálních rovnic Autor: Ivan Soukup Katedra: Katedra matematické analýzy Vedoucí diplomové práce: RNDr. Tomáš Bárta, Ph.D. e-mail vedoucího: tomas.barta@mff.cuni.cz Abstrakt: Práce zkoumá systém evolučních nelineárních parciálních integro- diferenciálních rovnic ve třech prostorových dimenzích. Konkrétně studuje e- xistenci řešení systému uvedeném v [1] s Dirichletovou okrajovou podmínkou a počáteční podmínkou u0. Hlavní linie důkazu povedeme po vzoru důkazu v [9] a pokusíme se vyhnout komplikacím vyplývajícím z integrálního členu. Postup se skládá z aproximace konvektivního členu, aproximace potenciálů obou nelinearit kvadratickými funkcemi, důkazu existence aproximativního řešení a následně z navrácení se k původnímu problému pomocí regularity aproximativního řešení a vlastnostem nelinearit. Cílem je vylepšit výsledky získané v [1]. 1cs_CZ
dc.description.abstractTitle: Weak solutions for a class of nonlinear integrodifferential equations Author: Ivan Soukup Department: Department of mathematical analysis Supervisor: RNDr. Tomáš Bárta, Ph.D. Supervisor's e-mail address: tomas.barta@mff.cuni.cz Abstract: The work investigates a system of evolutionary nonlinear partial integrodifferential equations in three dimensional space. In particular it stud- ies an existence of a solution to the system introduced in [1] with Dirichlet boundary condition and initial condition u0. We adopt the scheme of the proof from [9] and try to avoid the complications rising from the integral term. The procedure consists of an approximation of the convective term and an ap- proximation of the potentials of both nonlinearities using a quadratic function, proving the existence of the approximative solution and then returning to the original problem via regularity of the approximative solution and properties of the nonlinearities. The aim is to improve the results of the paper [1]. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectIntegrodiferenciální rovnicecs_CZ
dc.subjectnelinearitycs_CZ
dc.subjectexistence řešenícs_CZ
dc.subjectregularitacs_CZ
dc.subjectIntegrodifferential equationsen_US
dc.subjectnonlinearitiesen_US
dc.subjectexistence of a solutionen_US
dc.subjectregularityen_US
dc.titleSlabá řešení pro třídu nelineárních integrodiferenciálních rovnicen_US
dc.typediplomová prácecs_CZ
dcterms.created2012
dcterms.dateAccepted2012-05-31
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId81078
dc.title.translatedSlabá řešení pro třídu nelineárních integrodiferenciálních rovniccs_CZ
dc.contributor.refereeKaplický, Petr
dc.identifier.aleph001470269
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csNázev práce: Slabá řešení pro třídu nelineárních integrodiferenciálních rovnic Autor: Ivan Soukup Katedra: Katedra matematické analýzy Vedoucí diplomové práce: RNDr. Tomáš Bárta, Ph.D. e-mail vedoucího: tomas.barta@mff.cuni.cz Abstrakt: Práce zkoumá systém evolučních nelineárních parciálních integro- diferenciálních rovnic ve třech prostorových dimenzích. Konkrétně studuje e- xistenci řešení systému uvedeném v [1] s Dirichletovou okrajovou podmínkou a počáteční podmínkou u0. Hlavní linie důkazu povedeme po vzoru důkazu v [9] a pokusíme se vyhnout komplikacím vyplývajícím z integrálního členu. Postup se skládá z aproximace konvektivního členu, aproximace potenciálů obou nelinearit kvadratickými funkcemi, důkazu existence aproximativního řešení a následně z navrácení se k původnímu problému pomocí regularity aproximativního řešení a vlastnostem nelinearit. Cílem je vylepšit výsledky získané v [1]. 1cs_CZ
uk.abstract.enTitle: Weak solutions for a class of nonlinear integrodifferential equations Author: Ivan Soukup Department: Department of mathematical analysis Supervisor: RNDr. Tomáš Bárta, Ph.D. Supervisor's e-mail address: tomas.barta@mff.cuni.cz Abstract: The work investigates a system of evolutionary nonlinear partial integrodifferential equations in three dimensional space. In particular it stud- ies an existence of a solution to the system introduced in [1] with Dirichlet boundary condition and initial condition u0. We adopt the scheme of the proof from [9] and try to avoid the complications rising from the integral term. The procedure consists of an approximation of the convective term and an ap- proximation of the potentials of both nonlinearities using a quadratic function, proving the existence of the approximative solution and then returning to the original problem via regularity of the approximative solution and properties of the nonlinearities. The aim is to improve the results of the paper [1]. 1en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990014702690106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV