Řízení lineárních systémů
Control of linear systems
Řízení lineárních systémů
bakalářská práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/40277/thumbnail.png?sequence=7&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/40277Identifikátory
SIS: 94207
Kolekce
- Kvalifikační práce [11266]
Autor
Vedoucí práce
Oponent práce
Honzík, Petr
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
4. 9. 2012
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Slovenština
Známka
Velmi dobře
Klíčová slova (česky)
regulace, diferenciální rovnice, stabilita, kontrolovatelnostKlíčová slova (anglicky)
control, differential equations, stability, controllabilityCiel'om tejto práce je nahliadnut' do teórie lineárnych systémov prostredníctvom populačného modela reprezentovaným parciálnou diferenciálnou rovnicou s okrajovou a počiatočnou podmienkou. Špeciálnu pozornot' venujeme silno spojitým semigrupám na Banachovom priestore. Za týmto účelom uvedie- me pojem homogénneho a nehomogénneho Cauchyovho problému a riešime daný populačný model v tejto abstraktnej formulácii. Správanie systému riešime na základe vlastností spektrálnej a rezolventnej množiny. Obecne otázku kontrolo- vatel'nosti obmedzíme na otázku uniformnej exponenciálnej stability a stabilizo- vatel'nosti. Snahou tohto problému, je v prípade nestability systému pomocou zpätnej väzby zaručit' stabilitu systému. Klíčová slova: kontrola, diferenciálne rovnice, stabilita, kontrolovatel'nost' 1
The aim of this work is to look into the theory of linear systems via population model represented by partial differential equations with boundary and initial condition. Special attention is devoted to the strongly continuous semig- roups on a complex Banach space. For this purpose, the notion of a homogeneous and inhomogeneous Cauchy problem is introduced and we solve our model in this abstract formulation. The system behaviour is based on properties of the resolvent set and spectrum. Controllability question limits to solve the uniformly exponen- tially stability and the exponentially stabilizability. The point of this problem is in the case of the unstability to show exponencially stability of the system by using feedback. Keywords: control, differential equations, stability, controllability 1