dc.contributor.advisor | Milota, Jaroslav | |
dc.creator | Cesneková, Ivana | |
dc.date.accessioned | 2017-05-06T19:23:03Z | |
dc.date.available | 2017-05-06T19:23:03Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/40277 | |
dc.description.abstract | Ciel'om tejto práce je nahliadnut' do teórie lineárnych systémov prostredníctvom populačného modela reprezentovaným parciálnou diferenciálnou rovnicou s okrajovou a počiatočnou podmienkou. Špeciálnu pozornot' venujeme silno spojitým semigrupám na Banachovom priestore. Za týmto účelom uvedie- me pojem homogénneho a nehomogénneho Cauchyovho problému a riešime daný populačný model v tejto abstraktnej formulácii. Správanie systému riešime na základe vlastností spektrálnej a rezolventnej množiny. Obecne otázku kontrolo- vatel'nosti obmedzíme na otázku uniformnej exponenciálnej stability a stabilizo- vatel'nosti. Snahou tohto problému, je v prípade nestability systému pomocou zpätnej väzby zaručit' stabilitu systému. Klíčová slova: kontrola, diferenciálne rovnice, stabilita, kontrolovatel'nost' 1 | cs_CZ |
dc.description.abstract | The aim of this work is to look into the theory of linear systems via population model represented by partial differential equations with boundary and initial condition. Special attention is devoted to the strongly continuous semig- roups on a complex Banach space. For this purpose, the notion of a homogeneous and inhomogeneous Cauchy problem is introduced and we solve our model in this abstract formulation. The system behaviour is based on properties of the resolvent set and spectrum. Controllability question limits to solve the uniformly exponen- tially stability and the exponentially stabilizability. The point of this problem is in the case of the unstability to show exponencially stability of the system by using feedback. Keywords: control, differential equations, stability, controllability 1 | en_US |
dc.language | Slovenčina | cs_CZ |
dc.language.iso | sk_SK | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | regulace | cs_CZ |
dc.subject | diferenciální rovnice | cs_CZ |
dc.subject | stabilita | cs_CZ |
dc.subject | kontrolovatelnost | cs_CZ |
dc.subject | control | en_US |
dc.subject | differential equations | en_US |
dc.subject | stability | en_US |
dc.subject | controllability | en_US |
dc.title | Řízení lineárních systémů | sk_SK |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2012 | |
dcterms.dateAccepted | 2012-09-04 | |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 94207 | |
dc.title.translated | Control of linear systems | en_US |
dc.title.translated | Řízení lineárních systémů | cs_CZ |
dc.contributor.referee | Honzík, Petr | |
dc.identifier.aleph | 001498706 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | Ciel'om tejto práce je nahliadnut' do teórie lineárnych systémov prostredníctvom populačného modela reprezentovaným parciálnou diferenciálnou rovnicou s okrajovou a počiatočnou podmienkou. Špeciálnu pozornot' venujeme silno spojitým semigrupám na Banachovom priestore. Za týmto účelom uvedie- me pojem homogénneho a nehomogénneho Cauchyovho problému a riešime daný populačný model v tejto abstraktnej formulácii. Správanie systému riešime na základe vlastností spektrálnej a rezolventnej množiny. Obecne otázku kontrolo- vatel'nosti obmedzíme na otázku uniformnej exponenciálnej stability a stabilizo- vatel'nosti. Snahou tohto problému, je v prípade nestability systému pomocou zpätnej väzby zaručit' stabilitu systému. Klíčová slova: kontrola, diferenciálne rovnice, stabilita, kontrolovatel'nost' 1 | cs_CZ |
uk.abstract.en | The aim of this work is to look into the theory of linear systems via population model represented by partial differential equations with boundary and initial condition. Special attention is devoted to the strongly continuous semig- roups on a complex Banach space. For this purpose, the notion of a homogeneous and inhomogeneous Cauchy problem is introduced and we solve our model in this abstract formulation. The system behaviour is based on properties of the resolvent set and spectrum. Controllability question limits to solve the uniformly exponen- tially stability and the exponentially stabilizability. The point of this problem is in the case of the unstability to show exponencially stability of the system by using feedback. Keywords: control, differential equations, stability, controllability 1 | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
dc.identifier.lisID | 990014987060106986 | |