Zobrazit minimální záznam

Kategoriální metody v teorii struktur
dc.contributor.advisorTrnková, Věra
dc.creatorOpršal, Jakub
dc.date.accessioned2017-05-08T14:05:56Z
dc.date.available2017-05-08T14:05:56Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/20.500.11956/49654
dc.description.abstractNázev práce: Kategoriální metody v teorii struktur Autor: Jakub Opršal Katedra / Ústav: Matematický ústav Univerzity Karlovy Vedoucí diplomové práce: prof. RNDr. Věra Trnková, DrSc. Abstrakt: V první části práce se věnujeme funktorovým algebrám. Výjmečnou roli hrají iniciální funk- torové algebry, které lze získat tzv. konstrukcí iniciální algebry. V tomto roce Adámek a Trnková dokázali, že v kategorii množin se konstrukce může zastavit pouze po nejvýše třech krocích, nebo až na libovol- ném regulárním kardinálu. My na tento výsledek navazujeme a zkoumáme souvislost délky konstrukce a velikosti iniciální algebry. Ukazujeme, že délka konstrukce nikdy nepřesáhne kardinalitu iniciální algebry. Jinou transfinitiní konstrukci studoval Kelly v roce 1980. Popsal konstrukci volných algeber pro pointo- vané funktory a definoval třídu dobře pointovaných funktorů, pro které je konstrukce obzvláště jedno- duchá (a ve skutečnosti je zvláštním případem konstrukce relativně terminální algebry, kterou nedávno zkoumali Adámek a Trnková). V poslední kapitole popisujeme všechny dobře pointované funktory v kate- gorii množin a v kategorii k ní duální. Dále se věnujeme dobře pointovaným funktorům v mnohasortových množinách a popíšeme všechny možné třídy algeber pro takové funktory. Klíčová slova: funktorové algebry, konstrukce...cs_CZ
dc.description.abstractTitle: Categorial methods in structure theory Author: Jakub Opršal Department / Institute: Mathematical Institute, Charles University Supervisor of the master thesis: prof. RNDr. Věra Trnková, DrSc. Abstract: In the first part of the thesis we investigate functor algebras. Initial algebras have distin- guished role in the study of these structures, and it can be constructed by certain transfinite construction, which is called initial algebra construction. Sooner this year Adámek and Trnková have prooved, that the construction stops in either at most three, or in κ steps where κ is a regular cardinal. We continue with their work, and we study the relation between the size of the algebra and the length of the convergence. We prove that the length of the convergence never exceeds the cardinality of the initial algebra. Another transfinite construction has been studied in 1980 by Kelly. He has described the construction of free algebras for a pointed functor and defined a class of well-pointed functors for which the construction is especially simple (and is in fact special case of the construction of relatively terminal coalgebra which has been recently defined by Adámek and Trnková). In the last chapter we describe all well-pointed functors in categories of sets and the dual category, and we provide list of...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectfunktorové algebrycs_CZ
dc.subjectkonstrukce iniciální algebrycs_CZ
dc.subjectkonstrukce volné algebrycs_CZ
dc.subjectkategorie množincs_CZ
dc.subjectmnohasortové množinycs_CZ
dc.subjectfunctorial algebrasen_US
dc.subjectinitial algebra constructionen_US
dc.subjectfree algebra constructionen_US
dc.subjectcategory of setsen_US
dc.subjectmany-sorted setsen_US
dc.titleKategoriální metody v teorii strukturen_US
dc.typediplomová prácecs_CZ
dcterms.created2011
dcterms.dateAccepted2011-09-15
dc.description.departmentMathematical Institute of Charles Universityen_US
dc.description.departmentMatematický ústav UKcs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId79538
dc.title.translatedKategoriální metody v teorii strukturcs_CZ
dc.contributor.refereeKepka, Tomáš
dc.identifier.aleph001387004
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical structuresen_US
thesis.degree.disciplineMatematické strukturycs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Matematický ústav UKcs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Mathematical Institute of Charles Universityen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické strukturycs_CZ
uk.degree-discipline.enMathematical structuresen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csNázev práce: Kategoriální metody v teorii struktur Autor: Jakub Opršal Katedra / Ústav: Matematický ústav Univerzity Karlovy Vedoucí diplomové práce: prof. RNDr. Věra Trnková, DrSc. Abstrakt: V první části práce se věnujeme funktorovým algebrám. Výjmečnou roli hrají iniciální funk- torové algebry, které lze získat tzv. konstrukcí iniciální algebry. V tomto roce Adámek a Trnková dokázali, že v kategorii množin se konstrukce může zastavit pouze po nejvýše třech krocích, nebo až na libovol- ném regulárním kardinálu. My na tento výsledek navazujeme a zkoumáme souvislost délky konstrukce a velikosti iniciální algebry. Ukazujeme, že délka konstrukce nikdy nepřesáhne kardinalitu iniciální algebry. Jinou transfinitiní konstrukci studoval Kelly v roce 1980. Popsal konstrukci volných algeber pro pointo- vané funktory a definoval třídu dobře pointovaných funktorů, pro které je konstrukce obzvláště jedno- duchá (a ve skutečnosti je zvláštním případem konstrukce relativně terminální algebry, kterou nedávno zkoumali Adámek a Trnková). V poslední kapitole popisujeme všechny dobře pointované funktory v kate- gorii množin a v kategorii k ní duální. Dále se věnujeme dobře pointovaným funktorům v mnohasortových množinách a popíšeme všechny možné třídy algeber pro takové funktory. Klíčová slova: funktorové algebry, konstrukce...cs_CZ
uk.abstract.enTitle: Categorial methods in structure theory Author: Jakub Opršal Department / Institute: Mathematical Institute, Charles University Supervisor of the master thesis: prof. RNDr. Věra Trnková, DrSc. Abstract: In the first part of the thesis we investigate functor algebras. Initial algebras have distin- guished role in the study of these structures, and it can be constructed by certain transfinite construction, which is called initial algebra construction. Sooner this year Adámek and Trnková have prooved, that the construction stops in either at most three, or in κ steps where κ is a regular cardinal. We continue with their work, and we study the relation between the size of the algebra and the length of the convergence. We prove that the length of the convergence never exceeds the cardinality of the initial algebra. Another transfinite construction has been studied in 1980 by Kelly. He has described the construction of free algebras for a pointed functor and defined a class of well-pointed functors for which the construction is especially simple (and is in fact special case of the construction of relatively terminal coalgebra which has been recently defined by Adámek and Trnková). In the last chapter we describe all well-pointed functors in categories of sets and the dual category, and we provide list of...en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Matematický ústav UKcs_CZ
dc.identifier.lisID990013870040106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV