Rychlý a trénovatelný tokenizér pro přirozené jazyky
Rychlý a trénovatelný tokenizér pro přirozené jazyky
bakalářská práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/50274/thumbnail.png?sequence=8&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/50274Identifikátory
SIS: 83508
Kolekce
- Kvalifikační práce [11267]
Autor
Vedoucí práce
Oponent práce
Spousta, Miroslav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná informatika
Katedra / ústav / klinika
Ústav formální a aplikované lingvistiky
Datum obhajoby
7. 9. 2011
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
tokenizace, segmentace, maximální entropie, předzpracování textuKlíčová slova (anglicky)
tokenization, segmentaion, maximum entropy, text preprocessingV této práci představujeme systém pro dezambiguaci hranic mezi tokeny a větami. Charakteristickým znakem programu je jeho značná konfigurovatelnost a všestrannost, tokenizér si dokáže poradit např. i s nepřerušovaným čínským textem. Tokenizér používá klasifikátory založené na modelech s maximální entropií, a jedná se tudíž o systém strojového učení, kterému je nutné předložit již tokenizovaná ukázková data k trénování. Program je doplněn nástrojem pro hlášení úspěšnosti tokenizace, což pomáhá zejména při rychlém vývoji a ladění tokenizačního procesu. Systém byl vyvinut pouze za pomoci multiplatformních knihoven a při vývoji byl kladen důraz zejména na efektivitu a správnost. Po nezbytném přehledu jiných tokenizérů a krátkém úvodu do teorie modelů s maximální entropií se většina textu práce zabývá vlastní implementací tokenizéru a vyhodnocením jeho úspěšnosti.
In this thesis, we present a data-driven system for disambiguating token and sentence boundaries. The implemented system is highly configurable and versatile to the point its tokenization abilities allow to segment unbroken Chinese text. The tokenizer relies on maximum entropy classifiers and requires a sample of tokenized and segmented text as training data. The program is accompanied by a tool for reporting the performance of the tokenization which helps to rapidly develop and tune the tokenization process. The system was built with multi-platform libraries only and with emphasis on speed and correctness. After a necessary survey of other tools for text tokenization and segmentation and a short introduction to maximum entropy modelling, a large part of the thesis focuses on the particular implementation we developed and its evaluation.