dc.contributor.advisor | Bojar, Ondřej | |
dc.creator | Maršík, Jiří | |
dc.date.accessioned | 2017-05-08T16:54:45Z | |
dc.date.available | 2017-05-08T16:54:45Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/50274 | |
dc.description.abstract | V této práci představujeme systém pro dezambiguaci hranic mezi tokeny a větami. Charakteristickým znakem programu je jeho značná konfigurovatelnost a všestrannost, tokenizér si dokáže poradit např. i s nepřerušovaným čínským textem. Tokenizér používá klasifikátory založené na modelech s maximální entropií, a jedná se tudíž o systém strojového učení, kterému je nutné předložit již tokenizovaná ukázková data k trénování. Program je doplněn nástrojem pro hlášení úspěšnosti tokenizace, což pomáhá zejména při rychlém vývoji a ladění tokenizačního procesu. Systém byl vyvinut pouze za pomoci multiplatformních knihoven a při vývoji byl kladen důraz zejména na efektivitu a správnost. Po nezbytném přehledu jiných tokenizérů a krátkém úvodu do teorie modelů s maximální entropií se většina textu práce zabývá vlastní implementací tokenizéru a vyhodnocením jeho úspěšnosti. | cs_CZ |
dc.description.abstract | In this thesis, we present a data-driven system for disambiguating token and sentence boundaries. The implemented system is highly configurable and versatile to the point its tokenization abilities allow to segment unbroken Chinese text. The tokenizer relies on maximum entropy classifiers and requires a sample of tokenized and segmented text as training data. The program is accompanied by a tool for reporting the performance of the tokenization which helps to rapidly develop and tune the tokenization process. The system was built with multi-platform libraries only and with emphasis on speed and correctness. After a necessary survey of other tools for text tokenization and segmentation and a short introduction to maximum entropy modelling, a large part of the thesis focuses on the particular implementation we developed and its evaluation. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | tokenizace | cs_CZ |
dc.subject | segmentace | cs_CZ |
dc.subject | maximální entropie | cs_CZ |
dc.subject | předzpracování textu | cs_CZ |
dc.subject | tokenization | en_US |
dc.subject | segmentaion | en_US |
dc.subject | maximum entropy | en_US |
dc.subject | text preprocessing | en_US |
dc.title | Rychlý a trénovatelný tokenizér pro přirozené jazyky | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2011 | |
dcterms.dateAccepted | 2011-09-07 | |
dc.description.department | Institute of Formal and Applied Linguistics | en_US |
dc.description.department | Ústav formální a aplikované lingvistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 83508 | |
dc.title.translated | Rychlý a trénovatelný tokenizér pro přirozené jazyky | cs_CZ |
dc.contributor.referee | Spousta, Miroslav | |
dc.identifier.aleph | 001384652 | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Computer Science | en_US |
thesis.degree.discipline | Obecná informatika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Ústav formální a aplikované lingvistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Institute of Formal and Applied Linguistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná informatika | cs_CZ |
uk.degree-discipline.en | General Computer Science | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | V této práci představujeme systém pro dezambiguaci hranic mezi tokeny a větami. Charakteristickým znakem programu je jeho značná konfigurovatelnost a všestrannost, tokenizér si dokáže poradit např. i s nepřerušovaným čínským textem. Tokenizér používá klasifikátory založené na modelech s maximální entropií, a jedná se tudíž o systém strojového učení, kterému je nutné předložit již tokenizovaná ukázková data k trénování. Program je doplněn nástrojem pro hlášení úspěšnosti tokenizace, což pomáhá zejména při rychlém vývoji a ladění tokenizačního procesu. Systém byl vyvinut pouze za pomoci multiplatformních knihoven a při vývoji byl kladen důraz zejména na efektivitu a správnost. Po nezbytném přehledu jiných tokenizérů a krátkém úvodu do teorie modelů s maximální entropií se většina textu práce zabývá vlastní implementací tokenizéru a vyhodnocením jeho úspěšnosti. | cs_CZ |
uk.abstract.en | In this thesis, we present a data-driven system for disambiguating token and sentence boundaries. The implemented system is highly configurable and versatile to the point its tokenization abilities allow to segment unbroken Chinese text. The tokenizer relies on maximum entropy classifiers and requires a sample of tokenized and segmented text as training data. The program is accompanied by a tool for reporting the performance of the tokenization which helps to rapidly develop and tune the tokenization process. The system was built with multi-platform libraries only and with emphasis on speed and correctness. After a necessary survey of other tools for text tokenization and segmentation and a short introduction to maximum entropy modelling, a large part of the thesis focuses on the particular implementation we developed and its evaluation. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistiky | cs_CZ |
dc.identifier.lisID | 990013846520106986 | |