dc.contributor.advisor | Hajič, Jan | |
dc.creator | Kašpárek, Petr | |
dc.date.accessioned | 2024-11-28T12:12:11Z | |
dc.date.available | 2024-11-28T12:12:11Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/192066 | |
dc.description.abstract | Tato pra ́ce porovna ́va ́ dva pr ̌ı 'stupy k automaticke ́ pr ̌edanotaci se ́manticky ́ch tr ̌ı ́d sloves ve ve ̌ta ́ch za u ́c ̌elem pr ̌ida ́nı ́ nove ́ho jazyka do ontologie SynSemClass. Oba pr ̌ı 'stupy vycha ́zejı ́ z vı ́cejazyc ̌ne ́ho deep learning klasifikac ̌nı ́ho modelu, ktery ́ byl fine-tunovany ́ na jiz ̌ anotovany ́ch anglicky ́ch, c ̌esky ́ch a ne ̌mecky ́ch datech z ontologie. Prvnı ́, vı ́ce tradic ̌nı ́, pr ̌ı 'stup je annotation projection. Pouz ̌ı ́va ́ paralelnı ́ korpus a vy 's ̌e zmı ́ne ̌ny ́ model k vytvor ̌enı ́ predikcı ́ na zdrojove ́m jazyce, ktery ́ je jiz ̌ obsaz ̌en v ontologii, a tyto predikce projektuje na cı ́lovy ́ jazyk pomocı ́ automaticke ́ho word alignmentu. Druhy ́ pr ̌ı 'stup, zero-shot cross-lingual transfer, pr ̌edpokla ́da ́, z ̌e vı ́cejazykove ́ schopnosti deep learning modelu jsou dostatec ̌ne ́ a z ̌e mu ̊z ̌eme vytvor ̌it kvalitnı ́ predikce pr ̌ı ́mo na cı ́love ́m jazyce, i kdyz ̌ model nebyl nikdy tre ́nova ́n pro danou u ́lohu na dane ́m cı ́love ́m jazyce. Pro u ́c ̌ely vyhodnocenı ́ ruc ̌ne ̌ vytva ́r ̌ı ́me a anotujeme maly ́ korejsky ́ dataset za u ́c ̌elem otestova ́nı ́ vy 'sledku ̊ na jazyce, ktery ́ se vy ́znamne ̌ lis ̌ı ́ od anglic ̌tiny, c ̌es ̌tiny a ne ̌mc ̌iny. Dospı ́va ́me k za ́ve ̌ru, z ̌e zero-shot transfer vykazuje vy ́razne ̌ leps... | cs_CZ |
dc.description.abstract | This work compares two approaches to automatic preannotation of semantic class to verbs in a sentence for the purpose of adding a new language to the SynSemClass ontology. Both approaches rely on a multilingual deep learning classification model fine-tuned on already annotated English, Czech and German data of the ontology. The first, more classical, approach is annotation projection. It uses a parallel corpus and the aforementioned model to make predictions on a source language already present in the ontology and projects the predictions onto the target language using automated word alignment. The second approach, zero-shot cross-lingual transfer, assumes that the multilingual properties of the underlying model are sufficient and that we can make reasonable predictions directly on the target language, even though the model was never trained for that specific task on the specific target language. For the purpose of evaluation, we manually build and annotate a small Korean language dataset to test the performance on a language significantly different from English, Czech and German. We conclude that the zero-shot approach performs notably better than the alignment approach (p < 0.005) obtaining 0.54 both in recall and precision, compared to 0.37 and 0.41 in recall and precision respectively of the alignment... | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | annotation projection|zero-shot cross-lingual transfer|ontology|multilingual natural language processing|lexical semantics | en_US |
dc.subject | annotation projection|zero-shot cross-lingual transfer|ontologie|vícejazyčné zpracování přirozeného jazyka|lexikální sémantika | cs_CZ |
dc.title | Cross-lingual transfer for the annotation of the SynSemClass ontology | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2024 | |
dcterms.dateAccepted | 2024-06-28 | |
dc.description.department | Institute of Formal and Applied Linguistics | en_US |
dc.description.department | Ústav formální a aplikované lingvistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 256636 | |
dc.title.translated | Mezijazykový transfer pro anotaci SynSemClass ontologie | cs_CZ |
dc.contributor.referee | Štěpánek, Jan | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Computer Science with specialisation in Artificial Intelligence | en_US |
thesis.degree.discipline | Informatika se specializací Umělá inteligence | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Ústav formální a aplikované lingvistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Institute of Formal and Applied Linguistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Informatika se specializací Umělá inteligence | cs_CZ |
uk.degree-discipline.en | Computer Science with specialisation in Artificial Intelligence | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Tato pra ́ce porovna ́va ́ dva pr ̌ı 'stupy k automaticke ́ pr ̌edanotaci se ́manticky ́ch tr ̌ı ́d sloves ve ve ̌ta ́ch za u ́c ̌elem pr ̌ida ́nı ́ nove ́ho jazyka do ontologie SynSemClass. Oba pr ̌ı 'stupy vycha ́zejı ́ z vı ́cejazyc ̌ne ́ho deep learning klasifikac ̌nı ́ho modelu, ktery ́ byl fine-tunovany ́ na jiz ̌ anotovany ́ch anglicky ́ch, c ̌esky ́ch a ne ̌mecky ́ch datech z ontologie. Prvnı ́, vı ́ce tradic ̌nı ́, pr ̌ı 'stup je annotation projection. Pouz ̌ı ́va ́ paralelnı ́ korpus a vy 's ̌e zmı ́ne ̌ny ́ model k vytvor ̌enı ́ predikcı ́ na zdrojove ́m jazyce, ktery ́ je jiz ̌ obsaz ̌en v ontologii, a tyto predikce projektuje na cı ́lovy ́ jazyk pomocı ́ automaticke ́ho word alignmentu. Druhy ́ pr ̌ı 'stup, zero-shot cross-lingual transfer, pr ̌edpokla ́da ́, z ̌e vı ́cejazykove ́ schopnosti deep learning modelu jsou dostatec ̌ne ́ a z ̌e mu ̊z ̌eme vytvor ̌it kvalitnı ́ predikce pr ̌ı ́mo na cı ́love ́m jazyce, i kdyz ̌ model nebyl nikdy tre ́nova ́n pro danou u ́lohu na dane ́m cı ́love ́m jazyce. Pro u ́c ̌ely vyhodnocenı ́ ruc ̌ne ̌ vytva ́r ̌ı ́me a anotujeme maly ́ korejsky ́ dataset za u ́c ̌elem otestova ́nı ́ vy 'sledku ̊ na jazyce, ktery ́ se vy ́znamne ̌ lis ̌ı ́ od anglic ̌tiny, c ̌es ̌tiny a ne ̌mc ̌iny. Dospı ́va ́me k za ́ve ̌ru, z ̌e zero-shot transfer vykazuje vy ́razne ̌ leps... | cs_CZ |
uk.abstract.en | This work compares two approaches to automatic preannotation of semantic class to verbs in a sentence for the purpose of adding a new language to the SynSemClass ontology. Both approaches rely on a multilingual deep learning classification model fine-tuned on already annotated English, Czech and German data of the ontology. The first, more classical, approach is annotation projection. It uses a parallel corpus and the aforementioned model to make predictions on a source language already present in the ontology and projects the predictions onto the target language using automated word alignment. The second approach, zero-shot cross-lingual transfer, assumes that the multilingual properties of the underlying model are sufficient and that we can make reasonable predictions directly on the target language, even though the model was never trained for that specific task on the specific target language. For the purpose of evaluation, we manually build and annotate a small Korean language dataset to test the performance on a language significantly different from English, Czech and German. We conclude that the zero-shot approach performs notably better than the alignment approach (p < 0.005) obtaining 0.54 both in recall and precision, compared to 0.37 and 0.41 in recall and precision respectively of the alignment... | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistiky | cs_CZ |
thesis.grade.code | 1 | |
dc.contributor.consultant | Straková, Jana | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |